Skip to main content

Toxicological Effect of Herbicides (Diuron and Bentazon) on Snake Venom and Electric Eel Acetylcholinesterase

Abstract

The toxicological effects of the active ingredients of the herbicides diuron and bentazon on the activity of acetylcholinesterase (AChE) of krait (Bungarus sindanus) venom and electric eel (Electrophorus electricus) were studied. The diuron and entazon caused non-competitive inhibition of AChE from both species. For the venom AChE, the calculated IC50 for diuron and bentazon were found to be 3.25 and 0.14 μM, while for eel AChE, the respective IC50 values were 3.6 and 0.135 μM. In comparison, bentazon was a more potent inhibitor than diuron of AChE from both species. The insecticide lindane did not have any inhibitory effect on AChE activity in either species, even when tested at high concentrations (200–800 μM).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ahmed M, Rocha JBT, Mazzanti CM, Morsch AL, Cargnelutti D, Corrêa M, Loro V, Morsch VM, Schetinger MRC (2007) Malathion, carbofuran and paraquat inhibit Bungarus sindanus (krait) venom acetylcholinesterase and human serum butyrylcholinesterase in vitro. Ecotoxicology 16(4):363–369

    Article  CAS  Google Scholar 

  2. Barak D, Kronman C, Ordentlich A, Ariel N, Bromberg A, Marcus D, Lam A, Velan B, Shafferman A (1994) Acetylcholinesterase peripheral anionic site degeneracy conferred by amino acid arrays sharing a common core. J Biol Chem 269:6296–6305

    CAS  Google Scholar 

  3. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  4. Cousin X, Créminon C, Grassi J, Méflah K, Cornu G, Saliou B, Bon S, Massoulié J, Bon C (1996) Acetylcholinesterase from Bungarus venom: a monomeric species. FEBS Lett 387:196–200

    Article  CAS  Google Scholar 

  5. Dave KR, Syal AR, Katyare SS (2000) Tissue cholinesterases. A comparative study of their kinetic properties. Z Naturforsch 55:100–108

    CAS  Google Scholar 

  6. Dixon M, Webb EC (1964) Enzyme kinetics, 2nd edn. Longman, London, p 54

    Google Scholar 

  7. Ecobicon DJ, Corneau AM (1973) Pseudocholinestarase of mammalian plasma: Physiochemical properties and organophosphate inhibition in eleven species. Toxicol Appl Pharmacol 24:29–100

    Google Scholar 

  8. Eddleston M, Mohamed F, Davies JO, Eyer P, Worek F, Sheriff MH, Buckley NA (2006) Respiratory failure in acute organophosphorus pesticide self-poisoning. Oxf J Med 99:513–522

    CAS  Google Scholar 

  9. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95

    Article  CAS  Google Scholar 

  10. Frobert Y, Créminon C, Cousin X, Rémy M, Chatel J, Bom S, Bom C, Grassi J (1997) Acetylcholinesterases from Elapidae snake venoms: biochemical, immunological and enzymatic characterization. Biochim Biophys Acta 1339(2):253–267

    Article  CAS  Google Scholar 

  11. Froede HC, Wilson IB (1971) Acetylcholinesterase. In: Boyer PD (ed) The enzymes, 3rd edn. Academic Press, New York, p 87–114

  12. Lineweaver H, Burk D (1934) The determination of enzyme dissociation constants. J Am Chem Soc 56:658–666

    Article  CAS  Google Scholar 

  13. Massoulié J, Bon S (1982) The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Annu Rev Neurosci 5:57–106

    Article  Google Scholar 

  14. Menéndez-Helman RJ, Ferreyroa GV, dos Santos Afonso M, Salibián A (2012) Glyphosate as an acetylcholinesterase inhibitor in Cnesterodon decemmaculatus. Bull Environ Contam Toxicol 88(1):6–9

    Article  Google Scholar 

  15. Pope CN (1999) Organophosphorus insecticides: do they all have the same mechanism of action? J Toxicol Environ Health B 2:161–181

    Article  CAS  Google Scholar 

  16. Prody CA, Zevin-Sonkin D, Gnatt A, Goldberg O, Soreq H (1987) Isolation and characterization of full length cDNA clones coding for cholinesterase from fetal human tissues. Proc Natl Acad Sci USA 84:3555–3559

    Article  CAS  Google Scholar 

  17. Quinn DM (1987) Acetylcholinesterase enzyme structure, reaction dynamics, and virtual transition state. Chem Rev 87:955–979

    Article  CAS  Google Scholar 

  18. Rocha JBT, Emanuelli T, Pereira ME (1993) Effects of early undernutrition on kinetic parameters of brain acetylcholinesterase from adult rats. Acta Neurobiol Exp 53:431–437

    CAS  Google Scholar 

  19. Rosenberry TL, Johnson JL, Cusack B, Thomas JL, Emani S, Venkatasubban KS (2005) Interaction between the peripheral site and the acylation site in acetylcholinesterase. Chem Biol Interact 157–158:181–189

    Article  Google Scholar 

  20. Siddiqi AR, Zaidi ZH, Jornvall H (1991) Purification and characterization of a Kunitz-type trypsin inhibitor from leaf-nosed viper venom. FEBS Lett 294:141–143

    Article  CAS  Google Scholar 

  21. Sussman JL, Harel M, Frolow F, Oefner C, Goldman A, Toker L, Silman I (1991) Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein. Science 253:872–879

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Higher Education Commission of Pakistan and Directorate of Science and Technology, Khyber Pakhtunkhwa for Support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mushtaq Ahmed.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ahmed, M., Latif, N., Khan, R.A. et al. Toxicological Effect of Herbicides (Diuron and Bentazon) on Snake Venom and Electric Eel Acetylcholinesterase. Bull Environ Contam Toxicol 89, 229–233 (2012). https://doi.org/10.1007/s00128-012-0684-x

Download citation

Keywords

  • Snake venom
  • Acetylcholinesterase
  • Inhibition
  • Kinetics
  • Pesticides