Skip to main content

Bioaccumulation and Elimination of Waterborne Mercury in the Midge Larvae, Chironomus riparius Meigen (Diptera: Chironomidae)

Abstract

Here, mercury kinetics and behavioural effects in the midge larvae under a water-only exposure were assessed. Uptake and elimination of waterborne mercury were described by using a one-compartment kinetic model. Results show that midges were able to readily accumulate the heavy metal (BCF = 450), presenting a fast uptake, up to 13.1 μg Hg g of animal−1 at the end of the exposure period. Elimination was slow, with c.a. 39 % of the mercury in larvae being depurated after 48 h in clean medium. Behaviour did not present differences upon exposure or elimination, but a trend to increase ventilation was noticed during the exposure period.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Armitage PD, Cranston PS, Pinder LCV (eds). (1995) The Chironomidae: the biology and ecology of non-biting midges. Chapman and Hall, London, UK

  2. ASTM (1980) Standard practise for conducting acute toxicity tests with fishes, macroinvertebrates and amphibians, ASTM Philadelphia, P.A, pp E729–E780

  3. Azevedo-Pereira HMVS, Soares AMVM (2010) Effects of mercury on growth, emergence, and behavior of Chironomus riparius Meigen (Diptera: Chironomidae). Archi Environ Con Tox 59:216–224

    Article  CAS  Google Scholar 

  4. Cardoso PG, Lillebø AI, Pereira E, Duarte AC, Pardal MA (2009) Different mercury bioaccumulation kinetics by two macrobenthic species: the bivalve Scrobicularia plana and the polychaete Hediste diversicolor. Mar Environ Res 68:12–18

    Article  CAS  Google Scholar 

  5. Dell’Omo G (ed). (2002) Behavioural Ecotoxicology. Wiley, Hoboken

  6. Eisler R (1987) Mercury hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Fish and Wildlife Service Biological Report 85 (1.10)

  7. Fleeger JW, Carman KR, Nisbet RM (2003) Indirect effects of contaminants in aquatic ecosystems. Sci Total Environ 317:207–233

    Article  CAS  Google Scholar 

  8. Hall G, Pelchat P (1997) Evaluation of a direct solid sampling atomic absorption spectrometry for the trace determination of mercury in geological samples. Analyst 122:921–924

    Article  CAS  Google Scholar 

  9. Janssens de Bisthoven L, Gerhardt A, Soares AMVM (2004) Effects of acid mine drainage on larval Chironomus (Diptera, Chironomidae) measured with the Multispecies Freshwater Biomonitor TM. Environ Toxicol Chem 23:1123–1128

    Google Scholar 

  10. Lydy MJ, Lasater JL, Landrum PF (2000) Toxicokinetics of DDE and 2-chlorobiphenyl in Chironomus tentans. Arch Environ Contam Toxicol 38:163–168

    Article  CAS  Google Scholar 

  11. McCarty LS, Mackay D (1993) Enhancing ecotoxicological modeling and assessment. Environ Sci Technol 27:1719–1728

    Google Scholar 

  12. Morel FMM, Kraepiel AML, Amyot M (1998) The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Syst 29:543–566

    Article  Google Scholar 

  13. Nuutinen S, Landrum PF, Schuler LJ, Kukkonen JVK, Lydy MJ (2003) Toxicokinetics of organic contaminants in Hyalella azteca. Arch Environ Con Tox 44:467–475

    Article  CAS  Google Scholar 

  14. OECD (2004) Test no. 218: sediment-water chironomid toxicity test using spiked sediment. OECD Guidelines for the Testing of Chemicals. 1:1–21

  15. Postma JF, VanNugteren P, Buckert-De Jong MB (1996) Increased cadmium excretion in metal-adapted populations of the midge Chironomus riparius (diptera). Environ Toxicol Chem 15:332–339

    CAS  Google Scholar 

  16. Rossaro B, Gaggino GF, Marchetti R (1986) Accumulation of mercury in larvae and adults, Chironomus riparius (Meigen). Bull Environ Contam Toxicol 37:402–406

    Article  CAS  Google Scholar 

  17. Schoellhamer DH (1996) Time series of trace element concentrations calculated from time series of suspended solids concentrations and RMP water samples: Summary and Conclusions. In: 1995 Annual Report, San Francisco Estuary regional monitoring program for trace substances. San Francisco Estuary, Richmond, CA

  18. Sousa JP, Loureiro S, Pieper S, Frost M, Kratz W, Nogueira AJA, Soares AMVM (2000) Soil and plant diet exposure routes and toxicokinetics of lindane in a terrestrial isopod. Environ Toxicol Chem 19:2557–2563

    Article  CAS  Google Scholar 

  19. Timmermans KR, Peeters W, Tonkes M (1992) Cadmium, zinc, lead and copper in Chironomus riparius (Meigen) larvae (Diptera, Chironomidae): uptake and effects. Hydrobiologia 241:119–134

    Article  CAS  Google Scholar 

  20. Tsui MT-K, Wang W-X (2007) Biokinetics and tolerance development of toxic metals in Daphnia magna. Environ Toxicol Chem 26:1023–1032

    Article  CAS  Google Scholar 

  21. Wolfe MF, Schwarzbach S, Sulaiman RA (1998) Effects of mercury on wildlife: a comprehensive review. Environ Toxicol Chem 17:146–160

    Google Scholar 

Download references

Acknowledgments

Financial support for this work was provided by Fundação para a Ciência e Tecnologia through a PhD research grant to Henrique M.V.S. Azevedo Pereira (SFRH/BD/18516/2004), a Post-Doc grant to S.N. Abreu (SFRH/BPD/45807/2008), and by funding FEDER through COMPETE—Programa Operacional Factores de Competitividade, and by National funding through FCT-Fundação para a Ciência e Tecnologia, within the research project «FCOMP-01-0124-FEDER-007069» (PTDC/BIA-BDE/72841/2006).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Henrique M. V. S. Azevedo-Pereira.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Azevedo-Pereira, H.M.V.S., Abreu, S.N., Lemos, M.F.L. et al. Bioaccumulation and Elimination of Waterborne Mercury in the Midge Larvae, Chironomus riparius Meigen (Diptera: Chironomidae). Bull Environ Contam Toxicol 89, 245–250 (2012). https://doi.org/10.1007/s00128-012-0674-z

Download citation

Keywords

  • Toxicokinetics
  • Online biomonitoring
  • Mercuric chloride
  • Water only exposure