Skip to main content

Comparison in Accumulation of Lanthanide Elements Among Three Brassicaceae Plant Sprouts

Abstract

Three kinds of sprouts in the Brassicaceae family of plants, namely, pink kale, radish and mustard were evaluated for the possibility of phytoremediation of lanthanides. The mustard sprout more efficiently accumulated lanthanides (e.g. 0.26 nmol La/g) than other Brassicaceae family plant sprouts (0.16 nmol La/g in the radish), however the radish sprout showed the fastest growth among three sprouts. Faster growth compensated for less efficiency in lanthanide accumulation (28 pmol La in the radish vs. 12 pmol La in the mustard) indicating that the radish is the most preferable sprout for the phytoremediation of lanthanides.

This is a preview of subscription content, access via your institution.

References

  1. Bañuelos G, Lin Z (2005) Phytoremediation management of selenium-laden drainage sediments in the San Luis Drain: a greenhouse feasibility study. Ecotoxicol Environ Saf 62:309–316

    Article  Google Scholar 

  2. Bañuelos G, LeDuc D, Pilon-Smits E, Terry N (2007) Transgenic Indian mustard overexpressing selenocysteine lyase or selenocysteine methyltransferase exhibit enhanced potential for selenium phytoremediation under field conditions. Environ Sci Technol 41:599–605

    Article  Google Scholar 

  3. Boyko A, Matsuoka A, Kovalchuk I (2011) Potassium chloride and rare earth elements improve plant growth and increase the frequency of the Agrobacterium tumefaciens-mediated plant transformation. Plant Cell Rep 30:505–518

    Article  CAS  Google Scholar 

  4. Du X, Graedel TE (2011) Global in-use stocks of the rare earth elements: a first estimate. Environ Sci Technol 45:4096–4101

    CAS  Google Scholar 

  5. Fu F, Akagi T, Shinotsuka K (1998) Distribution pattern of rare earth elements in fern: implication for intake of fresh silicate particles by plants. Biol Trace Elem Res 64:13–26

    Article  CAS  Google Scholar 

  6. Gong X, Hong M, Wang Y, Zhou M, Cai J, Liu C, Gong S, Hong F (2011) Cerium relieves the inhibition of photosynthesis of maize caused by manganese deficiency. Biol Trace Elem Res 141:305–316

    Article  CAS  Google Scholar 

  7. Grant T, Montes-Bayón M, LeDuc D, Fricke M, Terry N, Caruso J (2004) Identification and characterization of Se-methyl selenomethionine in Brassica juncea roots. J Chromatogr A 1026:159–166

    Article  CAS  Google Scholar 

  8. Hu X, Ding Z, Wang X, Chen Y, Dai L (2002) Effects of lanthanum and cerium on the vegetable growth of wheat (Triticum aestivum L.) seedlings. Bull Environ Contam Toxicol 69:727–733

    Article  CAS  Google Scholar 

  9. Ji P, Song Y, Sun T, Liu Y, Cao X, Xu D, Yang X, McRae T (2011) In situ cadmium phytoremediation using Solanum nigrum L.: the bio-accumulation characteristics trail. Int J Phytoremediation 13:1014–1023

    Article  CAS  Google Scholar 

  10. Lai Y, Wang Q, Yang L, Huang B (2006) Subcellular distribution of rare earth elements and characterization of their binding species in a newly discovered hyperaccumulator Pronephrium simplex. Talanta 70:26–31

    Article  CAS  Google Scholar 

  11. Lampe J, Peterson S (2002) Brassica, biotransformation and cancer risk: genetic polymorphisms alter the preventive effects of cruciferous vegetables. J Nutr 132:2991–2994

    CAS  Google Scholar 

  12. Natarajan S, Stamps R, Ma L, Saha U, Hernandez D, Cai Y, Zillioux E (2011) Phytoremediation of arsenic-contaminated groundwater using arsenic hyperaccumulator Pteris vittata L.: effects of frond harvesting regimes and arsenic levels in refill water. J Hazard Mater 185:983–989

    Article  CAS  Google Scholar 

  13. Ogra Y, Kitaguchi T, Ishiwata K, Suzuki N, Iwashita Y, Suzuki KT (2007) Identification of selenohomolanthionine in selenium-enriched Japanese pungent radish. J Anal At Spectrom 22:1390–1396

    Article  CAS  Google Scholar 

  14. Spinosa D, Angle J, Hartwell G, Hagspiel K, Leung D, Matsumoto A (2002) Gadolinium-based contrast agents in angiography and interventional radiology. Radiol Clin N Am 40:693–710

    Article  Google Scholar 

  15. Verplanck PL, Furlong ET, Gray JL, Phillips PJ, Wolf RE, Esposito K (2010) Evaluating the behavior of gadolinium and other rare earth elements through large metropolitan sewage treatment plants. Environ Sci Technol 44:3876–3882

    Article  CAS  Google Scholar 

  16. Wang X, Shan X, Zhang S, Wen B (2003) Distribution of rare earth elements among chloroplast components of hyperaccumulator Dicranopteris dichotoma. Anal Bioanal Chem 376:913–917

    Article  CAS  Google Scholar 

  17. Yathavakilla S, Shah M, Mounicou S, Caruso J (2005) Speciation of cationic selenium compounds in Brassica juncea leaves by strong cation-exchange chromatography with inductively coupled plasma mass spectrometry. J Chromatogr A 1100:153–159

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan (Nos. 23390032 and 23390164 to Y. O.), and the financial support from Agilent Technologies Foundation, USA.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yasumitsu Ogra.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Anan, Y., Awaya, Y., Ogihara, Y. et al. Comparison in Accumulation of Lanthanide Elements Among Three Brassicaceae Plant Sprouts. Bull Environ Contam Toxicol 89, 133–137 (2012). https://doi.org/10.1007/s00128-012-0665-0

Download citation

Keywords

  • Lanthanides
  • Brassicaceae
  • Sprout
  • Phytoremediation