Skip to main content
Log in

Glyphosate, Alachor and Maleic Hydrazide have Genotoxic Effect on Trigonella foenum-graecum L.

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

In the present study effects of herbicides glyphosate (GP), alachlor (AL) and maleic hydrazide (MH) is studied on mitotic cells of Trigonella foenum-graecum L. Seeds of T. foenum-graecum L. treated with a series of concentrations ranging from 0.1%, 0.2%, 0.3%, 0.4% and 0.5% for 1, 2 and 6 h and their effect on mitotic index and chromosomal aberrations was studied. The results indicate that these herbicides reduced mitotic index in dose-dependent manner. In addition, increase in the percentage of abnormal mitotic plates was observed in herbicide treated groups which was both concentration and time dependent. Commonly observed abnormalities were c-mitosis, laggards, bridges, stickiness, c-anaphase, precocious separation, un-equal distribution and fragments. The result of the present investigation indicates that commonly used herbicides GP, AL and MH have significant genotoxic effect on T. foenum-graecum plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdelsalam AZE, Soliman KHA, Hassan HZ (1997) The mutagenic potentialities of two organophosphorus compounds using different biological system. Egypt J Genet Cytol 26:105–120

    Google Scholar 

  • Barbara LA, William TM, Bugg MW (1991) Effects of herbicide dithiopyr on cell division in wheat root tips. Pest Biochem Physiol 39:110–120

    Article  Google Scholar 

  • Barriuso J, Marin S, Mellado RP (2010) Effect of the herbicide glyphosate on glyphosate-tolerant maize rhizobacterial communities: a comparison with pre-emergence applied herbicide consisting of a combination of acetochlor and terbuthylazine. Environ Microbiol 12:1021–1030

    Article  CAS  Google Scholar 

  • Bowes J, Crofts AR, Arntzen CJ (1980) Redox reactions on the reducing side of photosystem II in chloroplasts with altered herbicide-binding properties. Arch Biochem Biophys 200:303–308

    Article  CAS  Google Scholar 

  • Burnet MWM, Loveys BR, Holtum JAM, Powles SB (1993) Increased detoxification is a mechanism of simazine resistance in Lolium rigidum. Pesti Biochem Physiol 46:207–218

    Article  CAS  Google Scholar 

  • Claudio De S, Piccolo A, De Marco A (1992) Genotoxic effect induced by herbicides atrazine, glyphosate in plants of Vicia faba grown in different soils. Sci Total Environ (123\124): 233–240

  • Crosby DG (1982) Pesticides as environmental mutagens. In: Fleck RA, Hollander A (eds) Genetic toxicology: an agricultural perspective. Plenum press, New York, pp 201–218

    Google Scholar 

  • De Marco A, De Simones C, Roglione M, Testa A, Trinca S (1992) Importance of the type of soil for the induction of micronuclei and the growth of primary roots of Vicia faba treated with the herbicides atrazine, glyphosphate and maleic hydrazide. Mutat Res 279:9–13

    Article  Google Scholar 

  • Egli MA, Low D, White KR, Howard JA (1985) Effect of herbicides and herbicide analogs on (C14) leucine incorporation by suspension-cultured Solanum nigrum cells. Pest Biochem Physiol 24:112–118

    Article  CAS  Google Scholar 

  • Egorova AB, Uspenskaya YuA, Mikhutkina SV, Stavitskaya EYu (2001) Damage of cytoskeleton and cell membranes in apoptosis. Adv Curr Biol 121:502–510

    CAS  Google Scholar 

  • El-Ghamery AA, El-Nahas AI, Mansour MM (2000) The action of atrazine herbicide as an inhibitor of cell division on chromosomes and nucleic acids content in root meristems of Allium cepa and Vicia faba. Cytologia 65:277–287

    Article  CAS  Google Scholar 

  • Garrett NE, Stack HF, Waters MD (1986) Evaluation of the genetic activity profiles of 65 pesticides. Mutat Res 168:301–325

    CAS  Google Scholar 

  • Gichner T, Menke M, Stavreva DA, Schubert I (2002) Maleic hydrazide induces genotoxic effects but no DNA damages detectable by the comet assay in tobacco and field bean. Mutagenesis 15:385–389

    Article  Google Scholar 

  • Granby K, Vahl M (2001) Investigation of herbicide glyphosate and plant growth regulators chlormequat and mepiquat in cereals produced in Denmark. Food Addit Contam 18:898–905

    Article  CAS  Google Scholar 

  • Grossmann K, Tresch S, Plath P (2001) Triaziflam and diaminotriazine derivatives affect enantio selectively multiple herbicide target sites. Z Naturforsch C 56:559–569

    CAS  Google Scholar 

  • Hackett AG, Gustafson DI, Moran SJ, Hendley P, Van Wesenbeeck I, Simmons ND, Klein AJ, Kronenberg JM, Fuhrman JD, Honegger JL, Hanzas J, Healy D, Stone CT (2005) The acetochlor registration partnership surface water monitoring program four corn herbicides. J Environ Qual 34:877–889

    Article  CAS  Google Scholar 

  • Ismail C, Atilla Y, Yusuf T, Levent O (2009) Glyphosate reduced seed and leaf concentrations of calcium, manganese, magnesium and iron in non-glyphosate resistant soybean. Eur J Agro 31:114–119

    Article  Google Scholar 

  • Kaymak F (2005) Cytogenetic effects of maleic hydrazide on Helianthus annus L. Pak J Biol Sci 8:104–108

    Article  Google Scholar 

  • Kevin CV, Stephan OD (1986) Ultrastructural effects of glyphosate on Glycine max seedlings. Pest Biochem Physiol 26:56–65

    Article  Google Scholar 

  • Kiely T, Donaldson D, Grube A (2004) Pesticides industry sales and usage. 2000 and 2001 Market estimates. US Environmental Protection Agency. Washington. May 2004

  • Lyu BN (2001) An oxygen-peroxide concept of apoptosis and possible versions of its mechanism. Adv Cur Biol 121:488–501

    CAS  Google Scholar 

  • Marc J, Mulner-Lorillon O, Boulben S, Hureau D, Durand G, Belle R (2002) Pesticide roundup provokes cell division dysfunction at the level of CDK1/Cyclin B activation. Chem Res Toxicol 15:326–331

    Article  CAS  Google Scholar 

  • Marc J, Mulner-Lorillon O, Belle R (2004a) Glyphosate-based pesticides affect cell cycle regulation. Biol Cell 96:245–249

    Article  CAS  Google Scholar 

  • Marc J, Belle R, Julia M, Patrick C, Lorillon OM (2004b) Formulated glyphosate activates the DNA-response check point of the cell cycle leading to the prevention of G2/M transition. Toxicol Sci 82:436–442

    Article  CAS  Google Scholar 

  • Mike EF, Emerson DN, Fred WS, Loyd MW (1983) Effect of glyphosate on protein and nucleic acid synthesis and ATP levels in common cocklebur (Xanthium pensylvanicum) root tissue. Weed Sci 31:76–80

    Google Scholar 

  • Miteva LPE, Ivanov SV, Alexieva VS (2010) Alterations in glutathione pool and some related enzymes in leaves and roots of pea plants treated with herbicide glyphosate. Russ J Plant Physiol 57:131–136

    Article  CAS  Google Scholar 

  • Powles SB, Holtum JAM (eds) (1994) Herbicide resistance in plants: biology and biochemistry. Lewis Publishers, Boca Raton

    Google Scholar 

  • Qian XW (1998) Improvement on experiment method of micronucleus in root tip cell of Vicia faba. J Wenzhou Norm Coll 19:64–65

    Google Scholar 

  • Rank J, Jensen AG, Skov B, Pedersen LH, Jensen K (1993) Genotoxicity testing of the herbicide Roundup and its active ingredient glyphosate isopropylamine using the mouse bone marrow micronucleus test, Salmonella mutagenicity test and Allium anaphase–telophase test. Mutat Res/Gene Toxic 300:29–36

    Article  CAS  Google Scholar 

  • Sathasivan K, Haughn GW, Murai N (1991) Molecular basis of imidazolinone herbicide resistance in Arabidopsis thaliana var. Columbia. Plant Physiol 97:1044–1050

    Article  CAS  Google Scholar 

  • Savaskan C, Toker MC (1991) The effects of various doses of gamma irradiation on the seed germination and root tips chromosomes of rye (Secales cereals L.). Turk J Bot 15:349–359

    Google Scholar 

  • Siddiqui S, Meghvansi MK, Hasan Z (2007) Cytogenetics changes induced by sodium azide on Trigonella foenum-greacum L. seeds. S Afr J Bot 73:632–635

    Article  CAS  Google Scholar 

  • Siddiqui S, Khan SS, Meghvansi MK, Nazoora SA (2008) Mutagenic effect of herbicide maleic hydrazide on seed germination and radicle length on Trigonella foenum-graecum. Indian J Appl Pure Biol 23:103–106

    CAS  Google Scholar 

  • Siddiqui S, Meghvansi MK, Wani MA, Jabee F (2009) Evaluating cadmium toxicity to the root meristem of Pisum sativum L. Acta Physiol Plant 31:531–536

    Article  CAS  Google Scholar 

  • Sinha SP (1989) Genotoxicity of pesticides. Perspect Cytol Genet 6:749–753

    Google Scholar 

  • Swietlinska Z, Zuk J (1978) Cytotoxic effects of maleic hydrazide. Mutat Res 55:15–30

    CAS  Google Scholar 

  • Tartar G, Fisun K, Fulya DGM (2006) Genotoxic effect of avenoxan on Allium cepa L. and Allium sativum L. Caryologia 59:241–247

    Google Scholar 

  • Van der Werf HMG (1996) Assessing the impact of pesticides on the environment. Agric Ecosyst Environ 60:81–96

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr Z. Shah and Prof S. Nasir Ali, Saifia Education Society, Bhopal, India, for providing the necessary laboratory facilities. Thanks are also due to DR.S.S. Khan, Department of Microbiology, Saifia Sciences PG College, Bhopal for his constant help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sazada Siddiqui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siddiqui, S., Meghvansi, M.K. & Khan, S.S. Glyphosate, Alachor and Maleic Hydrazide have Genotoxic Effect on Trigonella foenum-graecum L.. Bull Environ Contam Toxicol 88, 659–665 (2012). https://doi.org/10.1007/s00128-012-0570-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-012-0570-6

Keywords

Navigation