Skip to main content

A Linear Model to Predict Chronic Effects of Chemicals on Daphnia magna

Abstract

Chronic toxicity data for Daphnia magna are information requirements in the context of regulations on chemical safety. This paper proposes a linear model for the prediction of chemically-induced effects on the reproductive output of D. magna. This model is based on data retrieved from the Japanese Ministry of Environment database and it predicts chronic effects as a function of acute toxicity data. The proposed model proved to be able to predict chronic toxicities for chemicals not used in the training set. Our results suggest that experiments involving chronic exposure to chemicals could be reduced thanks to the proposed model.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Adema DM (1978) Daphnia magna as a test animal in acute and chronic toxicity tests. Hydrobiologia 59:125–134

    Article  CAS  Google Scholar 

  2. Dom N, Knapen D, Benoot D, Nobels I, Blust R (2010) Aquatic multi-species acute toxicity of (chlorinated) anilines: experimental versus predicted data. Chemosphere 81:177–186

    Article  CAS  Google Scholar 

  3. EC (2006) Regulation No 1907/2006 of the European parliament and of the council of 18 December 2006 concerning the registration, evaluation, authorisation and restriction of chemicals (REACH), establishing a European chemicals agency, amending directive 1999/45/EC and repealing council regulation (EEC) no 793/93 and commission regulation (EC) no 1488/94 as well as council directive 76/769/EEC and commission directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC, The European parliament and the council of the European union. Available at http://www.eur-lex.europa.eu/LexUriServ/site/en/oj/2006/l_396/l_39620061230en00010849.pdf

  4. Golbraikh A, Shen M, Xiao Z, Xiao YD, Lee KH, Tropsha A (2003) Rational selection of training and test sets for the development of validated QSAR models. J Comput Aid Mol Des 7:241–253

    Article  Google Scholar 

  5. Henegar A, Mombelli E, Pandard P, Pery ARR (2011) What can be learnt from an ecotoxicity database in the framework of the REACH regulation? Sci Total Environ 409:489–494

    Article  CAS  Google Scholar 

  6. Hilal SH, Karickhoff SW, Carreira LA (1995) A rigorous test for SPARC’s chemical reactivity models: estimation of more than 4,300 ionization pK(a)s. Quant Struct Act Relat 14:348–355

    Article  CAS  Google Scholar 

  7. Mackay D, Arnot JA, Petkova EP, Wallace KB, Call DJ, Brooke LT, Veith GD (2009) The physicochemical basis of QSARs for baseline toxicity. SAR QSAR Environ Res 20:393–414

    Article  Google Scholar 

  8. MoE (2010) Japan ecotoxicity tests data (version dated March 2010). Available at http://www.env.go.jp/chemi/sesaku/02e.pdf

  9. Neuwoehner J, Zilberman T, Fenner K, Escher BI (2010) QSAR-analysis and mixture toxicity as diagnostic tools: influence of degradation on the toxicity and mode of action of diuron in algae and daphnids. Aquat Toxicol 97:58–67

    Article  CAS  Google Scholar 

  10. OECD (1984) Daphnia sp. acute immobilisation test and reproduction test, part 1: 24 h EC50 acute immobilisation test available at http://www.oecd.org/dataoecd/17/21/1948249.pdf

  11. OECD (1998) Daphnia magna reproduction test available at http://www.oecd.org/dataoecd/17/63/1948277.pdf

  12. OECD (2010) OECD (Q)SAR application Toolbox. Software available from the OECD website http://www.oecd.org/document/54/0,3343,en_2649_34379_42923638_1_1_1_1,00.html

  13. R Development Core Team (2010) R: a language and environment for statistical computing, Vienna, Austria. R Development Core Team, Vienna. Available at http://www.R-project.org

  14. Ramos EU, Vaal MA, Hermens JLM (2002) Interspecies sensitivity in the aquatic toxicity of aromatic amines. Environ Toxicol Pharm 11:149–158

    Article  CAS  Google Scholar 

  15. Santojanni A, Gorbi G, Sartore F (1998) Prediction of fecundity in chronic toxicity tests on Daphnia magna. Wat Res 32:3146–3156

    Article  CAS  Google Scholar 

  16. Tetko IV, Gasteiger J, Todeschini R, Mauri A, Livingstone D, Ertl P, Palyulin VA, Radchenko EV, Zefirov NS, Makarenko AS, Tanchuk VY, Prokopenko VV (2005) Virtual computational chemistry laboratory: design and description. J Comput Aid Mol Des 19:453–463

    Article  CAS  Google Scholar 

  17. Varmuza K, Filzmoser P (2009) Introduction to multivariate statistical analysis in chemometrics. CRC Press, Boca Raton

    Book  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Agency (ANR) within the project AMORE (Contract number: 2009 CESA 15 01) and by the French Ministry in charge of Ecology and Sustainable Development, within the framework of Programmes 189 and 190.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Enrico Mombelli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 283 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mombelli, E., Pery, A.R.R. A Linear Model to Predict Chronic Effects of Chemicals on Daphnia magna . Bull Environ Contam Toxicol 87, 494 (2011). https://doi.org/10.1007/s00128-011-0393-x

Download citation

Keywords

  • Daphnia magna
  • Chronic toxicity
  • Acute toxicity
  • Predictive model
  • OECD (Q)SAR Toolbox