Skip to main content

Biodegradation of Carbazole by Newly Isolated Acinetobacter spp.

Abstract

In this study, two bacterial isolates designated Alp6 and Alp7 were isolated from soil collected from dye industries and screened for their ability to degrade carbazole. Growing cells of the isolates Alp6 and Alp7 could degrade 99.9% and 98.5% of carbazole, respectively in 216 h. The specific activity for degradation by the resting cells of Alp6 was found to be 7.96 μmol/min/g dry cell weight, while for Alp7 it was 5.82 μmol/min/g dry cell weight. Phylogenetic analysis based on 16S rDNA gene sequences showed that isolates Alp6 and Alp7 belonged to the genus Acinetobacter. To the best of our knowledge, this is the first report on the Acinetobacter spp. showing utilization of carbazole as carbon and nitrogen source.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Abdel-El-Haleem D (2003) Acinetobacter: environmental and biotechnological applications. Afr J Biotechnol 2(4):71–74

    Google Scholar 

  2. Al-Ahmad A, Al-Ahmad MW, Schon G, Daschner FD, Kummerer K (2000) Role of Acinetobacter for biodegradability of quaternary ammonium compounds. Bull Environ Contam Toxicol 64:764–770

    Article  CAS  Google Scholar 

  3. Benedik MJ, Gibbs PR, Riddle RR, Willson RC (1998) Microbial denitrogenation of fossil fuels. Trends Biotechnol 16:390–395

    Article  CAS  Google Scholar 

  4. Dijkshoorn L, Nemec A, Seifert H (2007) An increasing threat in the hospital: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol 5:939–951

    Article  CAS  Google Scholar 

  5. Grosser RJ, Warshawsky D, Vestal JR (1991) Indigenous and enhanced mineralization of pyrene, benzo[a]pyrene, and carbazole in soils. Appl Environ Microbiol 57(12):3462–3469

    CAS  Google Scholar 

  6. Johnsen AR, Wick LY, Harms H (2005) Principle of microbial PAH-degradation in soil. Environ Poll 133:71–84

    Article  CAS  Google Scholar 

  7. Kilbane JJ, Ranganathan R, Cleveland L, Kayser KJ, Ribiero C, Linhares MM (2000) Selective removal of nitrogen from quinoline and petroleum by Pseudomonas ayucida IGTN9 m. Appl Environ Microbiol 66:688–693

    Article  CAS  Google Scholar 

  8. Li YG, Li WL, Huang JX, Xiong XC, Gao HS, Xing JM et al (2008) Biodegradation of carbazole in oil/water biphasic system by a newly isolated bacterium Klebsiella sp. LSSE-H2. Biochem Eng J 41:166–170

    Article  CAS  Google Scholar 

  9. Meiying Y, Wenming L, Xiaoxu G, Zhenhuan Q, Xiaojuan Z, Xingzhi W (2009) Isolation and identification of a carbazole degradation gene cluster from Sphingomonas sp. JS1. World J Microbial Biotechnol 25:1625–1631

    Article  Google Scholar 

  10. Mushrush GW, Beal EJ, Hardy DR, Hughes JM (1999) Nitrogen compound distribution in middle distillate fuels derived from petroleum, oil shale and tar sand sources. Fuel Process Technol 61:197–210

    Article  CAS  Google Scholar 

  11. Ololade IA (2010) Prediction of polycyclic aromatic hydrocarbons toxicity using equilibrium partitioning approach and narcosis model. Bull Environ Contam Toxicol 85:238–242

    Article  CAS  Google Scholar 

  12. Ouchiyama N, Zhang Y, Omori T, Kodama T (1993) Biodegradation of carbazole by Pseudomonas spp. CA06 and CA10. Biosci Biotechnol Biochem 57:455–460

    Article  CAS  Google Scholar 

  13. Padoley KV, Mudliar SN, Pandey RA (2008) Heterocyclic nitrogenous pollutants in the environment and their treatment options—an overview. Biores Technol 99:4029–4043

    Article  CAS  Google Scholar 

  14. Santos SCC, Alviano DS, Alviano CS, Padula M, Leitao AC, Martins OB et al (2006) Characterization of Gordonia sp. strain F.5.25.8 capable of dibenzothiophene desulfurization and carbazole utilization. Appl Microbiol Biotechnol 71:355–362

    Article  CAS  Google Scholar 

  15. Sato S, Ouchiyama N, Kimura T, Nojiri H, Yamane H, Omori T (1997) Cloning of genes involved in carbazole degradation of Pseudomonas sp. strain CA10: nucleotide sequence of genes and characterization of metacleavage enzyme and hydrolase. J Bacteriol 179:4841–4849

    CAS  Google Scholar 

  16. Singh GB, Srivastava S, Gupta N (2010) Biodegradation of carbazole by a promising gram-negative bacterium. World Acad Sci Eng Technol 70:784–787

    Google Scholar 

  17. Singh GB, Srivastava S, Gupta S, Gupta N (2011) Evaluation of carbazole degradation by Enterobacter sp. isolated from hydrocarbon contaminated soil. Recent Res Sci Technol 3(11):44–48

    Google Scholar 

  18. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Bio Evol (accepted)

  19. Willumsen PA, Nielsen JK, Karlson U (2001) Degradation of phenanthrene-analogue azaarenes by Micobacterium gilvum strain LB307T under aerobic conditions. Appl Microbiol Biotechnol 56:539–544

    Article  CAS  Google Scholar 

Download references

Acknowledgments

G.B.S. would like to thank JIIT for providing research fellowship and Prof. Hideaki Nojiri, University of Tokyo for gifting Pseudomonas resinovorans CA10 strain.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nidhi Gupta.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Singh, G.B., Gupta, S., Srivastava, S. et al. Biodegradation of Carbazole by Newly Isolated Acinetobacter spp.. Bull Environ Contam Toxicol 87, 522 (2011). https://doi.org/10.1007/s00128-011-0382-0

Download citation

Keywords

  • Acinetobacter sp.
  • Biodegradation
  • Carbazole
  • 16S rDNA