Skip to main content

Occurrence of Fluoride in Arsenic-Rich Surface Waters: A Case Study in the Pampa Plain, Argentina

Abstract

High levels of fluoride in freshwater ecosystems are harmful for humans and animals, particularly, aquatic biota. In this paper, the concentrations of fluoride in arsenic-rich lotic ecosystems of the Pampa Plain, Argentina, were recorded. The relationship of fluoride with the concentration of arsenic was explored. Our results show that fluoride in these freshwater ecosystems ranged from 0.15 to 1.65 mg L−1. Concentrations of fluoride were highly and significantly (r = 0.71; p = 0.001) correlated with arsenic.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. APHA (American Public Health Association) (1995) Standard methods for the examination of water and wastewater, 19th edn. American Public Health Association, Washington

    Google Scholar 

  2. Camargo JA (1996) Comparing levels of pollutants in regulated rivers with safe concentrations of pollutants for fishes: a case study. Chemosphere 33:81–90

    Article  CAS  Google Scholar 

  3. Camargo JA (2003) Fluoride toxicity to aquatic organisms: a review. Chemosphere 50:251–264

    Article  Google Scholar 

  4. Canadian Council of Ministers of Environment (CCME) (2002) Canadian water quality guidelines for protection of aquatic life: inorganic fluorides. 1–4

  5. Datta DK, Grupta LP, Subramanian V (2000) Dissolved fluoride in the lower Ganges-Brahmaputra-Meghna river system in the Bengal Basin, Bangladesh. Environ Geol 39:1163–1168

    Article  CAS  Google Scholar 

  6. Edmunds WM, Smedley PL (1996) Groundwater geochemistry and health: an overview. In: Appleton JD, Fuge R, McCall GJH (eds) Environmental geochemistry and health, vol 113. London Geological Society Special Publication, London, pp 91–105

  7. Franco MF, Carro Pérez ME (2009) Assesment of natural arsenic in groundwater in Córdoba Province, Argentina. Environ Geochem Health 31:673–682

    Article  Google Scholar 

  8. Frenguelli J (1956) Rasgos generales de la hidrografía de la Provincia de Buenos Aires. LEMIT, Serie II (62):1–19. La Plata.

  9. Han F (2007) Biogeochemistry of trace elements in arid environments. Springer, Dordrecht

    Google Scholar 

  10. Hem JD (1985) Study and interpretation of the chemical characteristics of natural water. US Geological Survey Water Supply Paper, pp 2254–2263

  11. Hintze J (1998) Number Cruncher Statistical System (NCSS), Version 2000. Users Guide. Kaysville: Utah.

  12. Jongman RH, Ter Braak CJ, van Tongeren OF (2004) Data analysis in community and landscape ecology. Cambridge University Press, London

    Google Scholar 

  13. Law 24051 (1992) Ley Nacional de Residuos Peligrosos (Regime for hazardous wastes). Secretaría de Ambiente y Desarrollo Sustentable. Argentina. http://www2.medioambiente.gov.ar/mlegal/residuos/ley24051.htm

  14. Moren M, Malde MK, Olsen RE, Hemre GI, Dahl L, Karlsen O, Julshamn K (2007) Fluoride accumulation in Atlantic salmon (Salmo salar), Atlantic cod (Gadus morhua), rainbow trout (Onchorhyncus mykiss) and Atlantic halibut (Hippoglossus hippoglossus) fed diets with krill or amphipod meals and fish meal based diets with sodium fluoride (NaF) inclusion. Aquaculture 269:525–531

    Article  CAS  Google Scholar 

  15. Paoloni JD, Fiorentino CE, Sequeira ME (2003) Fluoride contamination of aquifers in the southeast subhumid pampa, Argentina. Environ Toxicol 18:317–320

    Article  CAS  Google Scholar 

  16. Rosso JJ, Troncoso JJ, Fernández Cirelli A (2011) Geographic distribution of arsenic and trace metals in lotic ecosystems of Pampa Plain, Argentina. Bull Environ Contam Toxicol 86:129–132

    Article  CAS  Google Scholar 

  17. Russell J, Erickson DR, Mount TL, Highland J, Russell Hockett EN, Leonard VR, Mattson TD, Dawson LottKG (2010) Effects of copper, cadmium, lead, and arsenic in a live diet on juvenile fish growth. Can J Fish Aquat Sci 67(11):1816–1826

    Article  Google Scholar 

  18. Shi X, Zhuang P, Zhang L, Feng G, Chen L, Liu J, Qu L, Wang R (2008) The bioaccumulation of fluoride ion in Siberian Sturgeon (Acipenser baerii) under laboratory conditions. Chemosphere 75:376–380

    Article  Google Scholar 

  19. Singh CK, Rina K, Singh RP, Shashtri S, Kamal V, Mukherjee S (2011) Geochemical modeling of high fluoride concentration in groundwater of Pokhran area of Rajasthan, India. Bull Environ Contam Toxicol 86(2):152–158

    Article  CAS  Google Scholar 

  20. Smedley PL, Kinniburgh DG (2002) A review of the source, behavior and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  CAS  Google Scholar 

  21. Smedley PL, Nicolli HB, Macdonald DMJ, Barros AJ, Tullio JO (2002) Hydrogeochemistry of arsenic and other inorganic constituents in groundwalers from La Pampa, Argentina. Appl Geochem 11:259–284

    Article  Google Scholar 

  22. Tekle-Haimanot R, Melaku K, Kloos H, Reimann C, Fantaye W, Zerihun L, Bjorvatn K (2006) The geographic distribution of fluoride in surface and groundwater in Ethiopia with an emphasis on the Rift Valley. Sci Total Environ 367:182–190

    Article  CAS  Google Scholar 

  23. Walton NRG (1989) Electrical conductivity and total dissolved solids—what is their precise relationship? Desalination 72(3):275–292

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are indebted to the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Universidad de Buenos Aires (UBA) for finantial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alicia Fernández Cirelli.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rosso, J.J., Puntoriero, M.L., Troncoso, J.J. et al. Occurrence of Fluoride in Arsenic-Rich Surface Waters: A Case Study in the Pampa Plain, Argentina. Bull Environ Contam Toxicol 87, 409 (2011). https://doi.org/10.1007/s00128-011-0358-0

Download citation

Keywords

  • Fluoride
  • Surface waters
  • Arsenic
  • Argentina