Health Risk Associated to Dietary Intake of Mercury in Selected Coastal Areas of Mexico

  • J. Ruelas-Inzunza
  • F. Páez-Osuna
  • A. C. Ruiz-Fernández
  • N. Zamora-Arellano
Article

Abstract

A hazard quotient (HQ) was evaluated for Mexican population considering Hg levels and consumption rates. Fish and shrimp were caught in selected coastal areas. HQ’s ranged from 0.004 to 0.01 in shrimp; from 0.004 to 1.04 in fish from NW Mexico; and from 0.02 to 0.19 in fish from the Gulf of Mexico. Highest HQ in fish were found in carnivorous fish Caranx caninus (HQ = 0.71) and Sphyrna lewini (HQ = 1.04) from NW Mexico. A more accurate study should be made considering organic Hg, contribution of Hg from other sources, and consumption rates according to age, sex and economic status.

Keywords

Risk assessment Fish Shrimp Hazard quotient Mercury 

References

  1. Allen GR, Bauchot ML, Bellwood DR, Bianchi G (1995) Peces óseos. In: Fischer W, Krupp F, Schneider W, Sommer C, Carpenter KE, Niem VH (eds) Guía FAO para la identificación de especies para los fines de la pesca. Pacífico Centro-oriental, vol II. Vertebrados-Parte 1. FAO, Roma, pp 647–1200Google Scholar
  2. Dietz R, Riget F, Cleeman M, Aarkrog A, Johansen P, Hansen C (2000) Comparisons of contaminants from different trophic levels and ecosystems. Sci Total Environ 245:221–231CrossRefGoogle Scholar
  3. Fitzgerald WF, Lamborg CH, Hammerschmidt CR (2007) Marine biogeochemical cycling of mercury. Chem Rev 107:641–662CrossRefGoogle Scholar
  4. García-Hernández J, Cadena-Cárdenas L, Betancourt-Lozano M, García-De-la-Parra LM, García-Rico L, Márquez-Farías F (2007) Total mercury content found in edible tissues of top predator fish from the Gulf of California, Mexico. Toxicol Environ Chem 3:507–522CrossRefGoogle Scholar
  5. Green-Ruiz CR (2000) Geoquímica de metales pesados y mineralogía de la fracción arcillosa de los sedimentos de cuatro puertos del Golfo de California. PhD thesis, Universidad Nacional Autónoma de MéxicoGoogle Scholar
  6. Hendrickx ME (1995) Los Camarones. In: Fischer W, Krupp F, Schneider W, Sommer C, Carpenter K, Niem VH (eds) Guía FAO para la identificación de especies para los fines de la pesca, Pacífico centro oriental. FAO, Roma, pp 417–537Google Scholar
  7. Huang M, Zhou S, Sun B, Zhao Q (2008) Heavy metals in wheat grain: assessment of potential health risk for inhabitants in Kunshan, China. Sci Total Environ 405:54–61CrossRefGoogle Scholar
  8. Hylander LD, Meili M (2003) 500 years of mercury production: global annual inventory by region until 2000 and associated emissions. Sci Total Environ 304:13–27CrossRefGoogle Scholar
  9. IAEA (1987) Intercalibartion of anlythical methods on marine environmental samples. Trace element measurements on fish homogenate. Results of the worldwide intercomparison run MA-B-3/TM. Report No. 36. International Atomic Energy Agency, MonacoGoogle Scholar
  10. Lindqvist O, Johansson K, Astrup M, Andersson A, Bringmark L, Hovsenius G, Iverfeldt A, Meili M, Timm B (1991) Mercury in the Swedish environment. Recent research on causes, consequences and corrective methods. Water Air Soil Pollut 55:221–261CrossRefGoogle Scholar
  11. Magalhães MC, Costa V, Menezes GM, Pinho MR, Santos RS, Monteiro LR (2007) Intra- and inter-specific variability in total and methylmercury bioacumulation by eight marine fish species from the Azores. Mar Pollut Bull 54:1654–1662CrossRefGoogle Scholar
  12. Marrugo-Negrete J, Olivero-Verbel J, Lans-Ceballos E, Norberto-Benítez L (2008) Total mercury and methylmercury concentrations in fish from the Mojana region of Colombia. Environ Geochem Health 30:21–30CrossRefGoogle Scholar
  13. Moody JR, Lindstrom RM (1977) Selection and cleaning of plastic containers for storage of trace element samples. Anal Chem 49:2264–2267CrossRefGoogle Scholar
  14. Morel F, Kraepiel A, Amyot M (1998) The chemical cycle and bioaccumulation of mercury. Annu Rev Ecol Sys 29:543–566CrossRefGoogle Scholar
  15. Murata K, Grandjean P, Dakeishi M (2007) Neurophysiological evidence of methylmercury neurotoxicity. American J Ind Med 50:765–771CrossRefGoogle Scholar
  16. Nauen CE (1983) Compilation of legal limits for hazardous susbstances in fish and fishery products. FAO Fish Circ 764:1–102Google Scholar
  17. Newman MC, Unger MA (2002) Fundamentals of Ecotoxicology. Lewis Publishers, Boca Raton, FLGoogle Scholar
  18. Páez-Osuna F, Ruiz-Fernández AC, Botello AV, Ponce-Vélez G, Osuna-López JI, Frías-Espericueta MG, López-López G, Zazueta-Padilla HM (2002) Concentrations of selected trace metals (Cu, Pb, Zn), organochlorines (PCBs, HCB) and total PAHs in mangrove oysters from the Pacific Coast of Mexico: an overview. Mar Pollut Bull 44:1296–1313CrossRefGoogle Scholar
  19. Powell JH, Powell RE (2001) Trace elements in fish overlying subaqueous tailings in the tropical west Pacific. Water Air Soil Pollut 125:81–104CrossRefGoogle Scholar
  20. Rainbow PS, Phillips DJH (1991) Cosmopolitan biomonitors of trace metals. Mar Pollut Bull 11:593–601Google Scholar
  21. Ruelas-Inzunza J, Páez-Osuna F (2005) Mercury in fish and shark tissues from two coastal lagoons in the Gulf of California, Mexico. Bull Environ Contam Toxicol 74:294–300CrossRefGoogle Scholar
  22. Ruelas-Inzunza J, García-Rosales SB, Páez-Osuna F (2004) Distribution of mercury in adult penaeid shrimps from Altata-Ensenada del Pabellón lagoon (SE Gulf of California). Chemosphere 57:1657–1661CrossRefGoogle Scholar
  23. Ruelas-Inzunza J, Páez-Osuna F, Zamora-Arellano N, Amezcua-Martínez F, Bojórquez-Leyva H (2009) Mercury in biota and surficial sediments from Coatzacoalcos estuary, Gulf of Mexico: distribution and seasonal variation. Water Air Soil Pollut 197:165–174CrossRefGoogle Scholar
  24. Ruelas-Inzunza J, Páez-Osuna F, García-Flores D (2010) Essential (Cu) and nonessential (Cd and Pb) metals in ichthyofauna from the coasts of Sinaloa state (SE Gulf of California). Environ Monit Assess 162:251–263CrossRefGoogle Scholar
  25. Shrestha KP, Noguera R, Chopite J, Sosa P (1988) Mercury content of some marine fish from the southern Caribbean Sea. Sci Total Environ 3:181–187CrossRefGoogle Scholar
  26. US EPA (1989) Risk assessment guidance for superfund. Human health evaluation manual (Part A). Interim final, vol 1. Environmental Protection Agency, Washington, EPA/540/1-89/002Google Scholar
  27. US EPA (2000) Handbook for non-cancer health effects evaluation. Environmental Protection Agency, WashingtonGoogle Scholar
  28. Wang X, Sato T, Xing B, Tao S (2005) Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci Total Environ 350:28–37CrossRefGoogle Scholar
  29. WWF (2000) Living planet report. World Wide Fund, LondonGoogle Scholar
  30. Zheng N, Wang Q, Zhang X, Zheng D, Zhang Z, Zhang S (2007) Population health risk due to dietary intake of heavy metals in the industrial area of Huludao city, China. Sci Total Environ 387:96–104CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • J. Ruelas-Inzunza
    • 1
  • F. Páez-Osuna
    • 2
  • A. C. Ruiz-Fernández
    • 2
  • N. Zamora-Arellano
    • 2
  1. 1.Environmental SectionTechnological Institute of MazatlánMazatlánMexico
  2. 2.Instituto de Ciencias del Mar y LimnologíaUniversidad Nacional Autónoma de MéxicoMazatlánMexico

Personalised recommendations