Skip to main content
Log in

Observation of Sward Destruction Caused by Irrigation with Toxic Microcystis Morphospecies Containing Water in Southern Hungary

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

In the summer of 2006 bloom-like phenomenon occurred in a garden pond in Szeged, Southern Hungary. After regular watering of a sward with pond water containing the algal mass, destruction of garden grass occurred. Microcystis aeruginosa, Microcystis viridis, Microcystis ichthyoblabe, and Microcystis wesenbergii were identified by light microscopy in the water sample; microcystin-FR, -LR, -RR and -YR were determined by matrix-assisted laser desorption/ionization—time-of-flight analysis. There was an 80% decrease in the green mass (87% in chlorophyll-content) of the grass in a 1 m2 area of the garden irrigated with pond water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Baskin T, Wilson JE (1997) Inhibitors of protein kinases and phosphatases alter root morphology and disorganise cortical microtubules. Plant Physiol 113:493–502

    Article  CAS  Google Scholar 

  • Bendall DS, Bowes JM, Stewart AC, Taylor ME (1988) Oxygen-evolving photosystem II particles from Phormidium laminosum. In: Packer L, Glazer AN (eds) Cyanobacteria, vol 167. Meth Enzymol Academic Press, San Diego, pp 272–280

    Chapter  Google Scholar 

  • Chen W, Song L, Dai J, Ganb N, Liu Z (2004) Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape (Brassica napus L.) and rice (Oryza sativa L.). Toxicon 43:393–400

    Article  CAS  Google Scholar 

  • Chorus I, Bartam J (1999) Toxic cyanobacteria in water—A guide to their public health consequences, monitoring and management. E and FN Spon London

  • Codd GA, Metcalf JS, Beattie KA (1999) Retention of Microcystis aeruginosa and microcystin by salad lettuce (Lactuca sativa) after spray irrigation with water containing cyanobacteria. Toxicon 37:1181–1185

    Article  CAS  Google Scholar 

  • Järvenpää S, Lundberg-Niinistö C, Spoofa L, Sjövall O, Tyystjärvi E, Meriluoto J (2007) Effects of microcystins on broccoli and mustard, and analysis of accumulated toxin by liquid chromatography–mass spectrometry. Toxicon 49:865–874

    Article  Google Scholar 

  • Komárek J, Anagnostidis K (1998) Cyanoprokaryota 1. Teil: Chroococcales. In: Ettl H, Gärtner G, Heynig H, Mollenhauer D (eds) Süßwasserflora von Mitteleuropa. Gustav Fischer, Jena, pp 1–548

    Google Scholar 

  • Kós P, Gorzó G, Surányi G, Borbély G (1995) Simple and efficient method for isolation and measurement of cyanobacterial hepatotoxins by plant tests (Sinapis alba L.). Anal Biochem 225:49–53

    Article  Google Scholar 

  • MacKintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett 264:187–192

    Article  CAS  Google Scholar 

  • Máthé Cs, M-Hamvas M, Vasas G, Surányi Gy, Bácsi I, Beyer D, Tóth Sz, Tímár M, Borbély Gy (2007) Microcystin-LR, a cyanobacterial toxin, induces growth inhibition and histological alterations in common reed (Phragmites australis/Cav./Trin. Ex Steud.) plants regenerated from embryogenic calli. New Phytol 176:824–835

    Article  Google Scholar 

  • McElhiney J, Lawton LA, Leifert C (2001) Investigations into the inhibitory effects of microcystins on plant growth, and the toxicity of plant tissues following exposure. Toxicon 39:1411–1420

    Article  CAS  Google Scholar 

  • M-Hamvas M, Máthé Cs, Molnár E, Vasas G, Grigorszky I, Borbély Gy (2003) Microcystin-LR alters the growth, anthocyanin content and single-stranded DNase enzyme activities in Sinapis alba L. seedlings. Aquat Toxicol 62:1–9

    Article  CAS  Google Scholar 

  • Mitrovic SM, Allis O, Furey A, James KJ (2005) Bioaccumulation and harmful effects of microcystin-LR in the aquatic plants Lemna minor and Wolffia arrhiza and the filamentous alga Chladophora fracta. Ecotoxicol Environ Saf 61:345–352

    Article  CAS  Google Scholar 

  • Ouahid Y, Perez-Silva G, del Campo FF (2005) Identification of potentially toxic environmental Microcystis by individual and multiple PCR amplification of specific microcystin synthetase gene regions. Environ Toxicol 20:235–242

    Article  CAS  Google Scholar 

  • Pereira S, Saker ML, Vale M, Vasconcelos VM (2009) Comparison of sensitivity of grasses (Lolium perenne L. and Festuca rubra L.) and lettuce (Lactuca sativa L.) exposed to water contaminated with microcystins. Bull Environ Contam Toxicol 83:81–84

    Article  CAS  Google Scholar 

  • Pflugmacher S (2002) Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems. Environ Toxicol 17:407–413

    Article  CAS  Google Scholar 

  • Reynolds CS, Jaworski GHM, Cmiech HA, Leedale GF (1981) On the annual cycle of the blue-green-alga Microcystis aeruginosa Kutz Emend Elenkin. Philos Trans R Soc Lond B Biol Sci 293:419–477

    Article  Google Scholar 

  • Romanowska-Duda Z, Tarczynska M (2002) The influence of microcystin-LR and hepatotoxic cyanobacterial extract on the water plant Spirodela oligorrhiza. Environ Toxicol 17:434–440

    Article  CAS  Google Scholar 

  • Runnegar M, Berndt N, Kong SM, Lee EYC, Zhang LF (1995) In vivo and in vitro binding of microcystin to protein phosphatase-1 and phosphatase-2A. Biochem Biophys Res Com 216:162–169

    Article  CAS  Google Scholar 

  • Smith RD, Wilson JE, Walker JC, Baskin TI (1994) Protein-phosphatase inhibitors block root hair growth and alter cortical cell shape of arabidopsis roots. Planta 194:516–524

    Article  CAS  Google Scholar 

  • Tillett D, Dittmann E, Erhard M, von Döhren H, Börner T, Neilan BA (2000) Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-poliketide synthetase system. Chem Biol 7:753–764

    Article  CAS  Google Scholar 

  • Vasas G, Gáspar A, Surányi Gy, Batta Gy, Gyémánt Gy, M-Hamvas M, Máthé Cs, Grigorszky I, Molnár E, Borbély Gy (2002) Capillary electrophoretic assay and purification of cylindrospermopsin, a cyanobacterial toxin from Aphanizomenon ovalisporum, by plant test (blue-green sinapis test). Anal Biochem 302:95–103

    Article  CAS  Google Scholar 

  • Visser PM, Ibelings BW, Mur LR, Walsby AE (2005) The ecophysiology of the harmful cyanobacterium Microcystis—features explaining its success and measures for its control. Aquatic Ecology Series 3, Springer, Berlin

  • Weiss J, Liebert H-P, Braune W (2000) Influence of microcystin-RR on growth and photosynthetic capacity of the duckweed Lemna minor L. J Appl Bot 74:100–105

    CAS  Google Scholar 

  • Welker M, Šejnohová L, Némethová D, von Döhren H, Jarkovský J, Maršálek B (2007) Seasonal shifts in chemotype composition of Microcystis sp. communities in the pelagial and the sediment of a shallow reservoir. Limnol Oceanogr 52:609–619

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by Hungarian National Research Foundation Grants OTKA F046493 and OTKA K81370, GVOP-3.2.1.-2004-04-0110/3.0., Bolyai Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to István Bácsi or Gábor Vasas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bácsi, I., Surányi, G., Gonda, S. et al. Observation of Sward Destruction Caused by Irrigation with Toxic Microcystis Morphospecies Containing Water in Southern Hungary. Bull Environ Contam Toxicol 86, 232–237 (2011). https://doi.org/10.1007/s00128-010-0182-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-010-0182-y

Keywords

Navigation