Skip to main content

Geographic Distribution of Arsenic and Trace Metals in Lotic Ecosystems of the Pampa Plain, Argentina

Abstract

In this paper, the geographic distribution of arsenic and other trace elements in surface waters of 39 lotic ecosystems of central Argentina was evaluated. Manganese and arsenic were the most conspicuous elements, being present in 82% and 59% of the sampled ecosystems of this region, respectively. As concentration averaged 113.69 μg L−1 varying between 55 and 198 μg L−1, other trace elements were hardly detected or not detected at all. It was remarkable the absence of detectable concentrations of anthropogenically derived metals as lead (Pb) and cadmium (Cd).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Anawar HM, Akaib J, Komakic K, Teraod H, Yoshiokae T, Ishizukaf T, Safiullahg S, Kato K (2003) Geochemical occurrence of arsenic in groundwater of Bangladesh: sources and mobilization processes. J Geochem Explor 77:109–131

    CAS  Article  Google Scholar 

  2. APHA (American Public Health Association) (1995) Standard methods for examination of water and wastewater, 19th edn. American Public Health Association, Washington

    Google Scholar 

  3. Baig JA, Kazi TG, Shah AQ, Kandhro GA, Afridi HI, Arain MB, Jamali MK, Jalbani N (2010) Speciation and evaluation of arsenic in surface water and groundwater samples: a multivariate case study. Ecotox Environ Safe 73:914–923

    Article  Google Scholar 

  4. Dzombak DA, Morel FMM (1990) Surface complexation modeling: hydrous ferric oxide. Wiley, New York

    Google Scholar 

  5. Farías SS, Casa VA, Vázquez C, Ferpozzi L, Pucci GN, Cohen IM (2003) Natural contamination with arsenic and other trace elements in ground waters of Argentine Pampean Plain. Sci Total Environ 309:187–199

    Article  Google Scholar 

  6. Fendorf S, Michael HA, van Geen A (2010) Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 328:1123–1127

    CAS  Article  Google Scholar 

  7. Frenguelli J (1956) Rasgos generales de la hidrografía de la Provincia de Buenos Aires. LEMIT Serie II: 1–19

  8. Heredia OS, Fernández Cirelli A (2009) Trace elements distribution in soil, pore water and groundwater in Buenos Aires, Argentina. Geoderma 149:409–414

    CAS  Article  Google Scholar 

  9. Lawson N, Mason R (2001) Concentration of mercury, methylmercury, cadmium, lead, arsenic, and selenium in the rain and stream water of two contrasting watersheds in western Maryland. Wat Res Vol 35(17):4039–4052

    CAS  Article  Google Scholar 

  10. Li S, Zhang Q (2010) Risk assessment and seasonal variations of dissolved trace elements and heavy metals in the Upper Han River, China. J Hazard M 181:1051–1058

    CAS  Article  Google Scholar 

  11. Nicolli HB, Suriano JM, Gómez Peral MA, Ferpozzi LH, Baleani OH (1989) Groundwater contamination with arsenic and other trace-elements in an area of the Pampa, province of Córdoba, Argentina. Environ Geol Water Sci 14:3–16

    CAS  Article  Google Scholar 

  12. Paoloni JD, Sequeira ME, Fiorentino CE (2005) Mapping of arsenic content and distribution in groundwater in the Southeast Pampa Argentina. J Environ Health 67(8):50–53

    CAS  Google Scholar 

  13. Paoloni JD, Fiorentino CE, Sequeira ME (2007) Fluoride contamination of aquifers in the southeast subhumid pampa, Argentina. Environ Toxicol 18:317–320

    Article  Google Scholar 

  14. Paoloni JD, Sequeira ME, Espósito ME, Fiorentino CE, Blanco MC (2009) Arsenic in water resources of the Southern Pampa Plains, Argentina. J Environ Pub Health. doi:10.1155/2009/216470

  15. Pérez Carrera A, Fernández Cirelli A (2004) Niveles de arsénico y flúor en agua de bebida animal en establecimientos de producción lechera (Pcia. de Córdoba, Argentina). Investigación Veterinaria 6(1):51–59

    Google Scholar 

  16. Peters SC, Blum JD, Karagas MR, Chamberlain CP, Sjostrom DJ (2006) Sources and exposure of the New Hampshire population to arsenic in public and private drinking water supplies. Chem Geol 228:72–84

    CAS  Article  Google Scholar 

  17. Smedley P, Kinniburg D (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    CAS  Article  Google Scholar 

  18. Smedley PL, Nicolli HB, Macdonald DMJ, Barros AJ, Tullio JO (2002) Hydrogeochemistry of arsenic and other inorganic constituents in groundwaters from La Pampa, Argentina. Appl Geochem 17:259–284

    CAS  Article  Google Scholar 

  19. Young GJ, Blevins RD (1981) Heavy metal concentrations in the Holston River Basin (Tennessee). Arch Environm Contam Toxicol 10:541–560

    CAS  Article  Google Scholar 

Download references

Acknowledgments

Authors are indebted to the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and the Universidad de Buenos Aires (UBA) for finantial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alicia Fernández Cirelli.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rosso, J.J., Troncoso, J.J. & Fernández Cirelli, A. Geographic Distribution of Arsenic and Trace Metals in Lotic Ecosystems of the Pampa Plain, Argentina. Bull Environ Contam Toxicol 86, 129–132 (2011). https://doi.org/10.1007/s00128-010-0177-8

Download citation

Keywords

  • Arsenic
  • Trace metals
  • Lotic ecosystems
  • Argentina