Skip to main content

Effect of Aquatic Vegetation on the Persistence of Cypermethrin Toxicity in Water

Abstract

Soybean production in Argentina comprises 15 million ha. Cypermethrin is the main insecticide applied amounting 150 g of active ingredient per hectare, thus representing roughly 2.3 thousand tons yearly released to the environment. Toxicity pulses have been observed in small streams draining agricultural basins, most of them sustaining macrophyte growth. Cypermethrin concentrations and its toxicity to the amphipod Hyalella curvispina was compared following an addition to laboratory mesocosms with and without a vegetation cover of the floating macrophyte Lemna sp. Both concentrations and toxicity decreased faster in the treatments covered with Lemna. Fast adsorption of the hydrophobic pesticide to the roots and fronds of Lemna was suggested.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Adam O, Badot P, Degiorgi F, Crini G (2009) Mixture toxicity ssessment of wood preservative pesticides in the freshwater amphipod Gammarus pulex (L.). Ecotoxicol Environ Saf 72:441–449

    CAS  Article  Google Scholar 

  2. APHA AWWA WEF (1995) Standard methods for the examination of water and waste-water. Washington, 1193 pp

  3. Bouldin JL, Farris JL, Moore MT, Stephens WW, Smith S Jr, Cooper CM (2005) Evaluated fate and effects of atrazine and lambda-cyhalothrin in vegetated and unvegetated microcosms. Environ Toxicol 20:487–498

    CAS  Article  Google Scholar 

  4. Brander SM, Werner I, White JW, Deanovic L (2009) Toxicity of a dissolved pyrethroid mixture to Hyalella azteca at environmentally relevant concentrations. Environ Toxicol Chem 28:1493–1499

    CAS  Article  Google Scholar 

  5. Carriquiriborde P, Díaz J, Mugni H, Bonetto C, Ronco A (2007) Impact of cypermethrin on stream fish populations under field use in biotech-soybean production. Chemosphere 68:613–621

    CAS  Google Scholar 

  6. CASAFE (2008) Cámara de Sanidad Agropecuaria y Fertilizantes, Buenos Aires, Argentina. Available from http://www.casafe.org/sobrelaindustria.htm. Accessed on Dec 2008

  7. Cooper CM, Moore MT, Bennett ER, Smith S, Farris JL, Milam CD, Shields FD Jr (2004) Innovative uses of vegetated drainage ditches for reducing agricultural runoff. Water Sci Technol 49(3):117–123

    CAS  Google Scholar 

  8. Crossland NO, Shires SW, Bennett D (1982) Aquatic toxicology of cypermethrin III fate and biological effects of spray drift deposits in fresh water adjacent to agricultural land. Aquat Toxicol 2:253–270

    CAS  Article  Google Scholar 

  9. Farmer D, Hill I, Maund S (1995) A comparison of the fate and effects of two pyrethroid insecticides (lambda-cyhalothrin and cypermethrin) in pond mesocosms. Ecotoxicol 4:219–244

    CAS  Article  Google Scholar 

  10. Friberg-Jensen U, Wendt-Rash L, Woin P, Christoffesen K (2003) Effects of the pyrethroid insecticide, cypermethrin, on a freshwater community studied under field conditions I. Direct and indirect effects on abundance measures of organisms at different trophic levels. Aquat Toxicol 63:357–371

    CAS  Article  Google Scholar 

  11. García M, Rodrígues Capítulo A, Ferrari L (2010) Age-related differential sensitivity to cadmium in Hyalella curvispina (Amphipoda) and implications in ecotoxicity studies. Ecotoxicol Environ Saf 73:771–778

    Article  Google Scholar 

  12. Jergentz S, Pessacq P, Mugni H, Bonetto C, Schulz R (2004a) Linking in situ bioassays and dynamics of macroinvertebrates to assess agricultural contamination in streams of the Argentine Pampa. Ecotoxicol Environ Saf 59:133–141

    CAS  Article  Google Scholar 

  13. Jergentz S, Mugni H, Bonetto C, Schulz R (2004b) Runoff-related endosulfan contamination and aquatic macroinvertebrate response in rural basins near Buenos Aires, Argentina. Arch Environ Contam Toxicol 46(3):345–353

    CAS  Article  Google Scholar 

  14. Jergentz S, Mugni H, Bonetto C, Schulz R (2005) Assessment of insecticide contamination in runoff and stream water of small agricultural streams in the main soybean area of Argentina. Chemosphere 61(6):817–826

    CAS  Article  Google Scholar 

  15. Leistra M, Zweers AJ, Warinton JS, Crum SJH, Hand LH, Beltman WHJ, Maund SJ (2003) Fate of the insecticide lambda-cyhalothrin in ditch enclosures differing in vegetation density. Pest Manag Sci 60:75–84

    Article  Google Scholar 

  16. Marino D, Ronco A (2005) Cypermethrin and chlorpyrifos concentration levels in surface water bodies of the Pampa Ondulada, Argentina. Bull Environ Contam Toxicol 75(4):820–826

    CAS  Article  Google Scholar 

  17. Moore MT, Bennett ER, Cooper CM, Smith S, Shields FD Jr, Milam CD, Farris JL (2001) Transport and fate of atrazine and lambda-cyalothrin in an agricultural drainage ditch in the Mississippi Delta, USA. Agr Ecosyst Environ 87:309–314

    CAS  Article  Google Scholar 

  18. Mugni HD (2009) Nutrient concentration and pesticide toxicity in superficial water of rural basins. PhD dissertation (In Spanish). National University of La Plata, Argentina 140 pp

  19. Muir D, Rawn GP, Grift NP (1985) Fate of the pyrethroid insecticide deltamethrin in small ponds: a mass balance study. J Agric Food Chem 33:603–609

    CAS  Article  Google Scholar 

  20. USEPA (2000) Methods for measuring the toxicity and bioaccumulation of sediment-associated contaminants with freshwater invertebrates, 2nd edn. US Environmental Protection Agency EPA 600/R-99/064, National Service Center for Environmental Publications, Cincinnati

Download references

Acknowledgments

This study was funded by the Argentine National Scientific and Technical Research Council (CONICET) and National Agency for Scientific and Technological Promotion for financial support. Thanks to unknown reviewers and editorial staff for valuable corrections and suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. Bonetto.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mugni, H., Demetrio, P., Bulus, G. et al. Effect of Aquatic Vegetation on the Persistence of Cypermethrin Toxicity in Water. Bull Environ Contam Toxicol 86, 23–27 (2011). https://doi.org/10.1007/s00128-010-0143-5

Download citation

Keywords

  • Cypermethrin
  • Macrophyte
  • Toxicity persistence
  • Hyalella curvispina