Skip to main content

Physiological, Biochemical and Growth Responses of Lady’s Finger (Abelmoschus esculentus L.) Plants as Affected by Cd Contaminated Soil

Abstract

Cadmium contamination of the soil is a common cause of environmental concern in the suburban areas of developing cities in India The present research paper describes the changes in physiological, biochemical, growth and yield characteristics, and bioaccumulation potential of lady’s finger (Abelmoschus esculentus L.), an important vegetable crop at different levels of Cd in the soil. Cadmium accumulation was maximum in roots followed by stems, leaves and fruits at 100 mg Cd kg−1 in the soil. Cd accumulation in lady’s finger negatively affected the physiological and biochemical characteristics, growth and yield. The magnitude of negative effect enhanced with increasing Cd concentration. The study suggests that due to higher potential of bioaccumulation of Cd in lady’s finger and consequent reductions in growth and yield, this plant may not be a suitable option for cultivation in Cd contaminated soil.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Allen SE, Grimshaw HM, Rowland AP (1986) Chemical analysis. In: Moore PD, Chapman SB (eds) Methods in plant ecology. Blackwell Scientific Publication, Oxford, pp 285–344

    Google Scholar 

  2. Arduini I, Goldbold DL, Onnis A (1994) Cadmium and copper change root growth and morphology of Pinus pinea and Pinus pinaster seedlings. Physiol Plant 92:675–680

    Article  CAS  Google Scholar 

  3. Baszynski T, Wadja L, Krol M, Wolinska D, Krupa Z, Tuken-Dorf A (1980) Photosynthetic activities in cadmium treated plants. Physiol Plant 48:365–370

    Article  CAS  Google Scholar 

  4. Bates LS, Waldran RP, Teare ID (1973) Rapid determination of proline for water stress studies. Plant Soil 39:205–209

    Article  CAS  Google Scholar 

  5. Bhattacharya M, Choudhuri MA (1994) Effect of Pb and Cd on the biochemical changes in the leaves of terrestrial (Vigna) and aquatic (Hydrilla) plant under solution culture. Indian J Plant Physiol 37:99–103

    Google Scholar 

  6. Bray HC, Thorpe WY (1954) Analysis of phenolic compounds of interest in metabolism. In: Click D (ed) Methods of biochemical analysis. Interscience Publications Inc., New York, pp 27–52

    Chapter  Google Scholar 

  7. Britton C, Mehley AC (1955) Assay of catalase and peroxides. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, vol II. Academic Press Inc, New York, p 764

    Google Scholar 

  8. Chaoui A, Mazhoudi S, Ghorbal MH, Ferlani EE (1997) Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.). Plant Sci 127:139–147

    Article  CAS  Google Scholar 

  9. Chen W, Yang X, He Z, Feng Y, Hu F (2008) Differential changes in photosynthetic capacity, chlorophyll fluorescence and chloroplast ultrastructure between Zn-efficient and Zn-inefficient rice genotypes (Oryza sativa) under low zinc stress. Physiol Plant 132:89–101

    Article  CAS  Google Scholar 

  10. Dietze KJ, Baier M, Kramer U (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Prasad MNV, Hagenmeyer J (eds) Heavy metal stress in plants. Springer, Berlin, pp 73–97

    Google Scholar 

  11. Dong J, Wu F-B, Zhang G-P (2005) Effects of cadmium on growth and photosynthesis of tomato seedlings. J Zhejiang Uni Sci-B 6(10):974–980

    Article  Google Scholar 

  12. Duxbury AC, Yentsch CS (1956) Plankton pigment monographs. J Marine Res 15:91–101

    Google Scholar 

  13. Fahey RC, Brown WC, Adams WB, Worsham MB (1978) Occurrence of glutathione in bacteria. J Bacteriol 133:1126–1129

    CAS  Google Scholar 

  14. Heath RL, Packer L (1968) Phytoperoxidation in isolated chloroplast I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  15. Islam EU, Yang X, HE Z, Mahmood Q (2007) Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops. J Zhejiang Univ Sci B 8:1–13

    Article  Google Scholar 

  16. Keller T, Schwager H (1977) Air pollution and ascorbic acid. Eur J Fores Pathol 7:338–350

    Article  CAS  Google Scholar 

  17. Khudsar T, Iqbal M, Sairam RK (2004) Zinc-induced changes in morpho-physiological and biochemical parameters in Artemisia annua. Biol Planta 48(2):255–260

    Article  CAS  Google Scholar 

  18. Lehoczky É, Szabados I, Marth P (1996) Cd content of plants as affected by soil Cd concentration. Commun Soil Sci Plant Anal 27:1765–1777

    Article  CAS  Google Scholar 

  19. Lehoczky E, Szabo L, Horvath S (1998) Cadmium uptake by lettuce in different soils. Commun Soil Sci Plant Anal 28:1903–1912

    Article  Google Scholar 

  20. Lowry OH, Rosenbrough F, Randall RJ (1951) Protein measurement with folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  21. Luna CM, Gonzalez VS, Trippi VS (1994) Oxidative damage caused by excess copper in oat leaves. Plant Cell Physiol 35:11–15

    CAS  Google Scholar 

  22. MacFarlane GR, Burchett MD (2001) Photosynthetic pigments and peroxidase activity as indicators of heavy metal stress in the grey mangrove, Avicennia marina (Forsk.). Mar Pollut Bull 42(3):233–240

    Article  CAS  Google Scholar 

  23. Maclachlan S, Zalik S (1963) Plastid structure, chlorophyll concentration and free amino acid composition of a chlorophyll mutant on barley. Can J Bot 41:1053–1062

    Article  CAS  Google Scholar 

  24. Moya JL, Ros R, Picazo I (1993) Influence of Cd and nickel on growth, net photosynthesis and carbohydrate distribution in rice plants. Photosynth Res 36:75–80

    Article  CAS  Google Scholar 

  25. Padmaja K, Prasad DDK, Prasad ARK (1990) Inhibition of chlorophyll synthesis in Phaseolus vulgaris L. seedlings by cadmium acetate. Photosyn 24:399–405

    CAS  Google Scholar 

  26. Quariti O, Gouia H, Ghorbal MH (1997) Responses of bean and tomato plants to cadmium: growth, mineral nutrition and nitrate reduction. Plant Physiol Biochem 35:347–354

    Google Scholar 

  27. Radwan MA, Salama AK (2006) Market basket survey for some heavy metals in Egyptian fruits and vegetables. Food Chem Toxicol 44:1273–1278

    Article  CAS  Google Scholar 

  28. Sharma RK, Agrawal M (2005) Biological effects of heavy metals: an overview. J Environ Biol 26(3/4):301–313

    CAS  Google Scholar 

  29. Sharma RK, Agrawal M (2006) Effects of single and combined treatments of Cd and Zn on carrot plants: uptake and bioaccumulation. J Plant Nutr 29:1791–1804

    Article  CAS  Google Scholar 

  30. Sharma RK, Agrawal M, Marshall FM (2006) Heavy metals contamination in vegetables grown in wastewater irrigated areas of Varanasi, India. Bull Environ Contam Toxicol 77:311–318

    Google Scholar 

  31. Sharma RK, Agrawal M, Marshall FM (2007) Heavy metals contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicol Environ Saf 66:258–266

    Article  CAS  Google Scholar 

  32. Sharma RK, Agrawal M, Agrawal SB (2008) Interactive effects of Cd and Zn on carrot plants: growth and biomass bioaccumulation. J Plant Nutr 31:1–17

    Article  Google Scholar 

  33. Sharma RK, Agrawal M, Marshall FM (2009a) Heavy Metals in vegetables collected from production and market areas of Varanasi. India Food Chem Toxicol 47:583–591

    Article  CAS  Google Scholar 

  34. Sharma RK, Agrawal M, Agrawal SB (2009b) Physiological and biochemical responses resulting from Cd and Zn accumulation in carrot (Daucus carota L.) plants. J Plant Nutr (in press)

  35. Singh RP, Agrawal M (2007) Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemos 67(11):2229–2240

    Article  CAS  Google Scholar 

  36. Singh S, Kumar M (2006) Heavy metal load of soil, water and vegetables in peri-urban Delhi. Environ Mon Assess 120:79–91

    Article  CAS  Google Scholar 

  37. Singh PK, Tewari SK (2003) Cadmium toxicity induced changes in plant-water relations and oxidative metabolism of Brassica juncea L. plants. J Environ Biol 24:107–117

    CAS  Google Scholar 

  38. Singh KP, Mohon D, Sinha S, Dalwani R (2004) Impact assessment of treated/untreated wastewater toxicants discharge by sewage treatment plants on health, agricultural, and environmental quality in wastewater disposal area. Chemos 55:227–255

    Article  CAS  Google Scholar 

  39. Singh S, Eapen S, D’ Souza SF (2006) Cadmium accumulation and its influence on lipid peroxidation and antioxidant system in an aquatic plant, Bacopa monnieri L. Chemos 62(2):233–246

    Article  CAS  Google Scholar 

  40. Singh A, Sharma RK, Agrawal SB (2008) Effects of fly ash incorporation on heavy metal accumulation, growth and yield responses of Beta vulgaris plants. Biores Technol 99:7200–7207

    Article  CAS  Google Scholar 

  41. Singh A, Sharma RK, Agrawal M, Marshall FM (2010) Risk assessment of food chain contamination by heavy metals due to long term uses of wastewater for irrigation. Food Chem Toxicol 48:611–619

    Article  CAS  Google Scholar 

  42. Tripathi RM, Ragunath R, Krishnamurty TM (1997) Dietary intake of heavy metals in Bombay City, India. Sci Total Environ 208:149–159

    Article  CAS  Google Scholar 

  43. Van Assche F, Clijsters H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195–206

    Article  Google Scholar 

  44. Vyas J, Puranic RM (1993) Inhibition of nitrate reductase activity by mercury in bean leaf sigments. Indian J Plant Physiol 36:57–60

    CAS  Google Scholar 

Download references

Acknowledgments

We thank the Head, Department of Botany, BHU, Varanasi, for providing all the necessary facilities for the present research work. Rajesh Kumar Sharma especially acknowledges the Director, G. B. Pant Institute of Himalayan Environment and Development, Kosi-Katarmal, Almora, Uttarakhand, India for his encouragement.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. K. Sharma.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sharma, R.K., Agrawal, M. & Agrawal, S.B. Physiological, Biochemical and Growth Responses of Lady’s Finger (Abelmoschus esculentus L.) Plants as Affected by Cd Contaminated Soil. Bull Environ Contam Toxicol 84, 765–770 (2010). https://doi.org/10.1007/s00128-010-0032-y

Download citation

Keywords

  • Cd
  • Bioaccumulation
  • Yield
  • Growth
  • Lady’s finger