Skip to main content

A Simple Allometric Diffusion-Based Biokinetic Model to Predict Cu(II) Uptake Across Gills of Freshwater Clam Corbicula fluminea

Abstract

The purpose of this study was to link Fick’s type mass transfer and biokinetics together with Michaelis-Menten kinetics to arrive at a simple predictive framework for quantifying biouptake mechanisms in gills of freshwater clam Corbicula fluminea exposed to Cu(II). A diffusion-based Cu(II) influx and permeability can be calculated using physiological and allometric-related parameters. Simulations indicate that Cu(II) bioconcentration factor of gills was 42. Estimated steady-state Cu(II) gill uptake influx and permeability were 0.097 nmol cm−2 s−1 and 0.48 cm s−1, respectively. The proposed simple allometric diffusion-based biokinetic model meets the need for describing nonequilibrium aspects of biouptake mechanisms in bivalve gills.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bayen S, Worms I, Parthasarathy N, Wilkinson K, Buffle J (2006) Cadmium bioavailability and speciation using the permeation liquid membrane. Anal Chim Acta 575:267–273

    Article  CAS  Google Scholar 

  2. Bury NR, Grosell M, Grover AK, Wood CM (1999) ATP-dependent silver transport across the basolateral membrane of rainbow trout gills. Toxicol Appl Pharmacol 159:1–8

    Article  CAS  Google Scholar 

  3. Chen YD (2007) Ecological survey on the waster saving system for culture and feeding study of the freshwater bivalve, Corbicula fluminea. Unpublished MS dissertation. National Taiwan University

  4. Croteau MN, Luoma SN (2005) Delineating copper accumulation pathways for the freshwater bivalve Corbicula using stable copper isotopes. Environ Toxicol Chem 24:2871–2878

    Article  CAS  Google Scholar 

  5. Del Vento S, Dachs J (2002) Prediction of uptake dynamics of persistent organic pollutants by bacteria and phytoplankton. Environ Toxicol Chem 21:2099–2107

    Article  CAS  Google Scholar 

  6. Dietz TH, Byrne RA (1990) Potassium and rubidium uptake in freshwater bivalves. J Exp Biol 150:395–405

    CAS  Google Scholar 

  7. Guyon F, Parthasarathy N, Buffle J (1999) Mechanism and kinetics of copper (II) transport through diaza-crown ether fatty acid-supported liquid membrane. Anal Chem 71:819–826

    Article  CAS  Google Scholar 

  8. Jorgensen CB (1996) Bivalve filter feeding revisited. Mar Ecol-Prog Ser 142:287–302

    Article  Google Scholar 

  9. Kwon JH, Katz LE, Liljestrand HM (2006) Use of a parallel artificial membrane system to evaluate passive absorption and elimination in small fish. Environ Toxicol Chem 25:3083–3092

    Article  CAS  Google Scholar 

  10. Liao CM, Lin CM, Jou LJ, Chiang KC (2007) Linking valve closure behavior and sodium transport mechanism in freshwater clam Corbicula fluminea in response to copper. Environ Pollut 147:656–667

    Article  CAS  Google Scholar 

  11. Liao CM, Jau SF, Chen WY, Lin CM, Jou LJ, Liu CW, Liao VHC, Chang FJ (2008) Acute toxicity and bioaccumulation of arsenic in feshwater clam Corbicula fluminea. Environ Toxicol 23:702–711

    Article  CAS  Google Scholar 

  12. Lien GJ, McKim JM (1993) Predicting branchial and cutaneous uptake of 2, 2’, 5, 5’-tetrachlorobiphenyl in fathead minnows (Pimephales promelas) and Japanese medaka (Oryzias latipes): Rate limiting factors. Aquat Toxicol 27:15–32

    Article  CAS  Google Scholar 

  13. McCorkle S, Dietz TH (1980) Sodium-transport in the freshwater Asiatic clam Corbicula fluminea. Biol Bull 159:325–336

    Article  CAS  Google Scholar 

  14. Medler S, Silverman H (2001) Muscular alteration of gill geometry in vitro: implications for bivalve pumping processes. Biol Bull 200:77–86

    Article  CAS  Google Scholar 

  15. Payne BS, Miller A (1995) Palp to gill area ratio of bivalves: a sensitive indicator of elevated suspended solids. Regulated Rivers: Res Manage 11:193–200

    Article  Google Scholar 

  16. Pelgrom SMGJ, Lock RAC, Balm PHM, Bonga SEW (1997) Calcium fluxes in juvenile tilapia, Oreochromis mossambicus, exposed to sublethal waterborne Cd, Cu or mixtures of these metals. Environ Toxicol Chem 16:770–774

    CAS  Google Scholar 

  17. Potts WTW, Hedges AJ (1991) Gill potentials in marine teleosts. J Comp Physiol B-Biochem Syst Environ Physiol 161:401–405

    Google Scholar 

  18. Sijm DTHM, van der Linde A (1995) Size-dependent bioconcentration kinetics of hydrophobic organic chemicals in fish based on diffusive mass transfer and allometric relationships. Environ Sci Technol 29:2769–2777

    Article  CAS  Google Scholar 

  19. Tao S, Liu CF, Dawson R, Long AM, Xu FL (2000) Uptake of cadmium adsorbed on particulates by gills of goldfish (Carassius auratus). Ecotox Environ Safe 47:306–313

    Article  CAS  Google Scholar 

  20. Yang Y, Liu M, Xu S, Hou L, Ou D, Liu H, Cheng S, Hofmann T (2006) HCHs and DDTs in sediment-dwelling animals from the Yangtze Estuary, China. Chemosphere 62:381–389

    Article  CAS  Google Scholar 

  21. Zheng H, Dietz TH (1998) Ion transport in the freshwater bivalve Corbicula fluminea. Biol Bull 194:161–169

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C.-M. Liao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chen, WY., Lin, CM., Ju, YR. et al. A Simple Allometric Diffusion-Based Biokinetic Model to Predict Cu(II) Uptake Across Gills of Freshwater Clam Corbicula fluminea . Bull Environ Contam Toxicol 84, 703–707 (2010). https://doi.org/10.1007/s00128-010-0011-3

Download citation

Keywords

  • Freshwater clam
  • Gills
  • Biouptake
  • Cu(II)