Skip to main content

Breast Milk Excretion Kinetic of β-HCH, pp′DDE and pp′DDT

Abstract

Breast milk is considered the most important route in the elimination of deposited organochlorine pesticides in a mother’s body. The equilibrium of organochlorine pesticides in the human body considers the elements of internal transport processes, the equilibrium pattern between pesticides and tissue fat contents, and the mobilization of lipids and lipoproteins among body parts. The aim of this study was to determine organochlorine pesticide levels in breast milk samples from the 4th to the 30th day of lactation and the trend in their concentration time so as to forecast the time tendency of residue levels and the pesticide excretion pattern. Milk samples were taken from forty participants and analyzed by GLC-ECD. The organochlorine pesticide residues determined in the breast milk samples during lactation decreased: β-HCH from 0.095 to 0.066 mg/kg, pp′DDE from 1.807 to 1.423 mg/kg and pp′DDT from 0.528 to 0.405 mg/kg, at the characteristic rate for each compound. The obtained results compared with the calculated fits of forecasts were parallel and did not exhibit significant differences. The newborn baby exposed during lactation had organochlorine pesticide residues whose levels decreased permanently. The levels depended not only on the breast milk nutrition, but also on the total environmental exposures which included air pollution as a significant contamination source.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alegría H, Wong F, Bidleman T, Salvador Figueroa M, Gold-Boucholt G, Waliszewski S, Ceja Moreno V, Infanzón R (2005) Ambient air levels of organochlorine pesticides in air in southern Mexico. In: Botello AV, Rendón von Osten J, Gold Boucholt G, Agraz Hernandez C (eds) Golfo de Mexico contaminación e impacto ambiental. Tendencias y diagnóstico, 2nd edn. Universidad Autónoma de Campeche, México

    Google Scholar 

  2. Brown JF, Lawton RW (1984) Polychlorinated biphenyls (PCB) partitioning between adipose tissue and serum. Bull Environ Contam Toxicol 33:277–280

    Article  CAS  Google Scholar 

  3. Cupul-Uicab LA, Gladen BC, Hernandez-Avila M, Weber JP, Longnecker MP (2008) DDE, a degradation product of DDT, and duration of lactation in a highly exposed area of Mexico. Environ Health Perspect 116:179–183

    CAS  Article  Google Scholar 

  4. Jensen RG (1989) Factors affecting the total lipid content of human milk. In: The lipids of human milk. CRC Press Inc., Boca Raton, pp 43–63

  5. Jensen RG (1999) Lipids in human milk. Lipids 34(12):1243–1271

    Article  CAS  Google Scholar 

  6. Jensen AA, Slorach SA (1991) Chemical contaminants in human milk. CRC Press, Boca Raton

    Google Scholar 

  7. Juchau MR (1983) Deposition of chemical contaminants in maternal embryonic/fetal systems. In: Hazard assessment of chemicals: current developments. Academic Press Inc. 2: 95–132

  8. Kent JC (2007) How breast feedings works. J Midwifery Women’s Health 52(6):564–570

    Article  Google Scholar 

  9. Minda H, Kovacs A, Funke S, Szasz M, Burus I, Molnar S, Marosvôlgyi T, Decsi T (2004) Changes of fatty acid composition of human milk during the first month of lactation: a day to day approach in the first week. Ann Nutr Metab 48(3):202–209

    Article  CAS  Google Scholar 

  10. Pons SM, Bargallo AC, Folgoso CC, Lopez-Sabater MC (2000) Triacylglycerol composition in colostrum, transitional and mature human milk. Eur J Clin Nutr 54(12):878–882

    Article  CAS  Google Scholar 

  11. Rudolph MC, Neville MC, Anderson SM (2007) Lipid synthesis in lactation: diet and the fatty acid switch. J Mammary Gland Biol Neoplasia 12(4):269–281

    Article  Google Scholar 

  12. Sala-Vila A, Castellote AI, Rodriguez-Palmero M, Campoy C, Lopez-Sabater MC (2005) Lipid composition in human breast milk from Granada (Spain): changes during lactation. Nutrition 21(4):467–473

    Article  CAS  Google Scholar 

  13. Scholtz MT, Bidleman TF (2006) Modeling of the long term fate of pesticide residues in agricultural soils and their surface exchange with the atmosphere: Part I. Model description and evaluation. Sci Total Environ 368(2-3):823–838

    Article  CAS  Google Scholar 

  14. Sonawane BR (1995) Chemical contaminants in human milk. An overview. Environ Health Perspect 103:197–205

    Article  CAS  Google Scholar 

  15. Waliszewski SM, Aguirre AA, Infanzon RM (1999a) Comparison of organochlorine pesticide residue levels in colostrum and mature milk from mothers living in Veracruz, México. Fresenius Environ Bull 8:678–684

    CAS  Google Scholar 

  16. Waliszewski SM, Aguirre AA, Infanzon RM, Benitez A, Rivera J (1999b) Comparison of organochlorine pesticide levels in adipose tissue and human milk of mothers living in Veracruz, Mexico. Bull Environ Contam Toxicol 62:685–690

    Article  CAS  Google Scholar 

  17. Waliszewski SM, Gómez-Arroyo S, Carvajal O, Villalobos-Pietrini R, Infanzón RM (2004) Uso del ácido sulfúrico en las determinaciones de plaguicidas organoclorados. Rev Int Contaminación Ambiental 20(4):185–192

    CAS  Google Scholar 

  18. Waliszewski SM, Mojica-Garcia X, Infanzón RM, Barradas-Dermitz DM, Carvajal Zarrabal O (2008) Uso del acido sulfúrico en la determinaciones de plaguicidas organoclorados. I. Calidad químico-analítica de la precipitación de grasas por el acido sulfúrico concentrado en muestras con alto contenido de lipidos. Rev Int Contaminación Ambiental 24(1):33–38

    CAS  Google Scholar 

  19. Yu Z, Palkovicova L, Drobna B, Petrik J, Kocan A, Ternovec T, Hertz-Picciotto I (2007) Comparison of organochlorine compound concentrations in colostrum and mature milk. Chemosphere 66:1012–1018

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. M. Waliszewski.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Waliszewski, S.M., Melo-Santiesteban, G., Villalobos-Pietrini, R. et al. Breast Milk Excretion Kinetic of β-HCH, pp′DDE and pp′DDT. Bull Environ Contam Toxicol 83, 869–873 (2009). https://doi.org/10.1007/s00128-009-9796-3

Download citation

Keywords

  • DDT
  • HCH
  • Breast milk
  • Excretion