Skip to main content

Dissipation of Fipronil in Water Under Laboratory Conditions

Abstract

Fipronil belongs to phenyl-pyrazole class of chemical compounds. Its dissipation in water has been studied for 90 days under laboratory conditions at two dose 0.028 (T1) and 0.056 (T2) μg mL−1. Residues were extracted with 15% dichloromethane in hexane by liquid-liquid partitioning and were estimated by GC-ECD system equipped with capillary column. Fipronil was found to persist up to 30 days after application and 100% dissipation was observed after 60 days of application. Dissipation followed a biphasic first order kinetics with half-life values of 19.13 and 20.63 days in water at (T1) and (T2) treatments, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Aajoud A, Ravanel P, Tissut M (2003) Fipronil metabolism and dissipation in a simplified aquatic ecosystem. J Agric Food Chem 51:1347–1352. doi:10.1021/jf025843j

    Article  CAS  Google Scholar 

  2. Agnihotri NP, Jain HK, Gajbhiye VT (1986) Persistence of some synthetic pyrethriod insecticides in soil, water and sediment-Part-I. J Entomol Res 10(2):147–151

    CAS  Google Scholar 

  3. Agnihotri NP, Jain HK, Gajbhiye VT, Srivastava KP (1989) Persistence of some synthetic pyrethroids and organophosphorous insecticides in soil, water and sediment-Part-II. J Entomol Res 13(2):131–136

    CAS  Google Scholar 

  4. Barcelo D, House WA, Maier EA, Griepink B (1994) Preparation, homogenity and stability studies of freeze-dried water containing pesticides. Int J Environ Anal Chem 57:237–254. doi:10.1080/03067319408027430

    Article  CAS  Google Scholar 

  5. Bobe A, Coste CM, Cooper JF (1997) Factors influencing the adsorption of fipronil in soils. J Agric Food Chem 45:4861–4865. doi:10.1021/jf970362z

    Article  CAS  Google Scholar 

  6. Cavalier TC, Lavy TL, Mattice JD (1991) Persistence of pesticides in groundwater sample. Groundwater 29:225–231

    CAS  Google Scholar 

  7. Chaton PF, Ravanel P, Tissut M, Meyran JC (2001) Toxicity and bioaccumulation of fipronil in non-target arthropodan fauna associated with subalpine mosquito breeding. Ecotoxicol Environ Saf 52:8–12. doi:10.1006/eesa.2002.2166

    Article  Google Scholar 

  8. Cole LM, Nicholson RA, Casida JE (1993) Action of phenylpyrazoleinsecticides at the GABA- gated chloride channel. Pestic Biochem Physiol 46:47–54. doi:10.1006/pest.1993.1035

    Article  CAS  Google Scholar 

  9. Kumari B, Madan VK, Kathpal TS (2007) Status of insecticide contamination of soil and water in Haryana, India. Environ Monit Assess 136:239–244. doi:10.1007/s10661-007-9679-1

    Article  Google Scholar 

  10. Lartiges SB, Garrigues PP (1995) Degradation kinetics of organophosphorus and organonitrogen pesticides in different water under various environmental conditions. Environ Sci Technol 29:1246–1254. doi:10.1021/es00005a016

    Article  CAS  Google Scholar 

  11. Lee ChCh, Green RE, Apt WJ (1986) Transformation and adsorption of fenamiphos, fenamiphos sulfoxide and fenamiphos sulfone in Molokai soil and simulated movement with irrigation. J Contam Hydrol 1:211–225. doi:10.1016/0169-7722(86)90017-3

    Article  CAS  Google Scholar 

  12. Moffat AS (1993) New chemicals seek to outwit insect pests. Science 261:550–551. doi:10.1126/science.8393587

    Article  CAS  Google Scholar 

  13. Organisation for Economic Co-operation and Development (1999) OECD guide lines for the testing of chemicals. Aerobic and Anaerobic Transformation in Soil. OECD, Paris

    Google Scholar 

  14. Ou LT, Rao PSC (1986) Degradation and metabolism of oxamyl and phenamiphos in soils. J Environ Sci Health B 21:25–33. doi:10.1080/03601238609372508

    Article  Google Scholar 

  15. Ramesh A, Balasubramanian M (1999) Kinetics and hydrolysis of fenamiphos, fipronil and trifluralin in aqueous buffer solutions. J Agric Food Chem 47(8):3367–3371. doi:10.1021/jf980885m

    Article  CAS  Google Scholar 

  16. Singh RP, Brindle ID, Hall CD, Chiba M (1990) Kinetic study of the decomposition of methyl[1-(butylcarbamoyl)-1H-benimidazol-2-yl]carbamate(benomyl) to methyl-1H-benzimidazol-2-yl carbamate (MBC). J Agric Food Chem 38:1758–1762. doi:10.1021/jf00098a027

    Article  CAS  Google Scholar 

  17. Vink JPM, Vanderzee SEATM (1996) Some physicochemical and environmental factors affecting transformation rates and sorption of the herbicide of the metamitron in soil. Pestic Sci 46:113–119. doi:10.1002/(SICI)1096-9063(199602)46:2<113::AID-PS321>3.0.CO;2-U

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude to the Head, Department of Entomology for providing research facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Beena Kumari.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Chopra, I., Kumari, B. Dissipation of Fipronil in Water Under Laboratory Conditions. Bull Environ Contam Toxicol 83, 828 (2009). https://doi.org/10.1007/s00128-009-9790-9

Download citation

Keywords

  • Insecticide
  • Fipronil
  • Dissipation
  • Half-life
  • First order kinetics
  • GC-ECD