Skip to main content

Pollutant Washoff Characterization of Expressway Runoff in Shanghai

Abstract

Pollutant washoff loads from an expressway in Shanghai, China were investigated during a 1-year study program. The median washoff load during an rainfall event for total solids, chemical oxygen demand, total nitrogen and total phosphorus were 4,389.8, 2,123.0, 47.6 and 1.6 mg/m2, respectively. Through principal factor analysis, three factors that represent the influence of pollutant source availability, rainfall volume and rainfall intensity account for 89% variance of the monitoring data. The result of multiple regression analysis reveals that antecedent dry period significantly influences the washoff load, while peak rainfall intensity and runoff volume may have some influence, which correlates well with the principal factor analysis results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Agrochemistry Commission and Soil Science Society of China (1983) Routine analysis methods for soil and agrochemistry. Science Press, Beijing

    Google Scholar 

  2. Barrett ME, Irish LB, Malina JF, Charbeneau RJ (1998) Characterization of highway runoff in Austin, Texas, Area. J Environ Eng 124:131–137. doi:10.1061/(ASCE)0733-9372(1998)124:2(131)

    Article  CAS  Google Scholar 

  3. Brezonik PL, Stadelmann TH (2002) Analysis and predictive models of stormwater runoff volumes, loads, and pollutant concentrations from watersheds in Twin Cities metropolitan area, Minnesota, USA. Water Res 36:1743–1757. doi:10.1016/S0043-1354(01)00375-X

    Article  CAS  Google Scholar 

  4. Driver NE, Troutman BM (1989) Regression models for estimating urban storm-runoff quality and quantity in the United States. J Hydrol 109:221–236. doi:10.1016/0022-1694(89)90017-6

    Article  CAS  Google Scholar 

  5. Flint KR, Davis AP (2007) Pollutant mass flushing characterization of highway stormwater runoff from an ultra-urban area. J Environ Eng 133:616–626. doi:10.1061/(ASCE)0733-9372(2007)133:6(616)

    Article  CAS  Google Scholar 

  6. Gupta K, Saul AJ (1996) Specific relationships for the first flush load in combined sewer flows. Water Res 30:1244–1252. doi:10.1016/0043-1354(95)00282-0

    Article  CAS  Google Scholar 

  7. Li LQ, Yin CQ, Kong LL, He QC (2007) Effect of antecedent dry weather period on Urban storm runoff pollution load. Environ Sci 28:2287–2293

    CAS  Google Scholar 

  8. Lundberg K, Carling M, Lindmark P (1999) Treatment of highway runoff: a study of three detention ponds. Sci Total Environ 235:363–365. doi:10.1016/S0048-9697(99)00236-3

    Article  CAS  Google Scholar 

  9. McLeod SM, Kells JA, Putz GJ (2006) Urban runoff quality characterization and load estimation in Saskatoon, Canada. J Environ Eng 132:1470–1481. doi:10.1061/(ASCE)0733-9372(2006)132:11(1470)

    Article  CAS  Google Scholar 

  10. Ouyang Y (2005) Evaluation of river water quality monitoring stations by principal component analysis. Water Res 39:2621–2635. doi:10.1016/j.watres.2005.04.024

    Article  CAS  Google Scholar 

  11. Parinet B, Lhote A, Legube B (2004) Principal component analysis: an appropriate tool for water quality evaluation and management-application to a tropical lake system. Ecol Model 178:295–311. doi:10.1016/j.ecolmodel.2004.03.007

    Article  CAS  Google Scholar 

  12. Shinya M, Tsuruho K, Konishi T, Ishikama M (2003) Evaluation of factors influencing diffusion of pollutant loads in urban highway runoff. Water Sci Technol 47:227–232

    CAS  Google Scholar 

  13. Taebi A, Droste RL (2004) Pollution loads in urban runoff and sanitary wastewater. Sci Total Environ 327:175–184. doi:10.1016/j.scitotenv.2003.11.015

    Article  CAS  Google Scholar 

  14. Vaze J, Chiew FHS (2002) Experimental study of pollutant accumulation on an urban road surface. Urban Water 4:379–389. doi:10.1016/S1462-0758(02)00027-4

    Article  CAS  Google Scholar 

  15. Vaze J, Chiew FHS (2004) Nutrient load associated with different sediment size in urban stormwater and surface pollutants. J Environ Eng 130:391–396. doi:10.1061/(ASCE)0733-9372(2004)130:4(391)

    Article  CAS  Google Scholar 

  16. Zhang HP, Yamada K (1996) Estimation for Urban runoff quality modeling. Water Sci Technol 34:49–54. doi:10.1016/0273-1223(96)00658-0

    Google Scholar 

  17. Zitko V (2006) Comments on Ouyang Y., Evaluation of river water quality monitoring stations by principal component analysis. Water Res 40:3141–3143. doi:10.1016/j.watres.2006.07.001

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was sponsored by Science and Technology Commission of Shanghai Municipality (Project No. 072112006). The authors wish to express their special thanks to the staffs of Shanghai Pudong Engineering Construction Management Corporation Ltd for their assistance in field sampling.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Haiping Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhu, Y., Liu, P., Liu, H. et al. Pollutant Washoff Characterization of Expressway Runoff in Shanghai. Bull Environ Contam Toxicol 83, 398–402 (2009). https://doi.org/10.1007/s00128-009-9740-6

Download citation

Keywords

  • Expressway runoff
  • Multiple regression analysis
  • Principal factor analysis
  • Pollutant washoff load