Advertisement

Trace Metals in Oysters, Crassotrea sps., from UNESCO Protected Natural Reserve of Urdaibai: Space-Time Observations and Source Identification

  • J. C. Raposo
  • L. BartoloméEmail author
  • E. Cortazar
  • G. Arana
  • M. Zabaljauregui
  • A. de Diego
  • O. Zuloaga
  • J. M. Madariaga
  • N. Etxebarria
Article

Abstract

The seasonal and spatial variability of trace metal concentrations of oyster tissues (Crassostea sps.) was studied. The samples were collected between 2002 and 2004 along the Urdaibai estuary (Murueta, Kanala and Arteaga). The seasonal influence on some metal concentrations (higher values in spring–summer season than in autumn–winter season) is more pronounced than the local site-specific influence. Furthermore, within each location a significant time-specific dependence on the trace metal concentration variations can be detected. Substantially higher concentrations of Zn (445.5–2,403.3 mg kg−1) and Mn (29.4–169.6 mg kg−1) were recorded in oysters inhabiting estuarine locations, possibly indicating a markedly higher natural bioavailability at these locations. Principal component analysis demonstrated that oysters could be separated depending on the inhabiting areas: Sn for Murueta, essential metals for Kanala, and Co and Cd for Arteaga sampling points, respectively.

Keywords

Oysters Trace metals ICP-MS Biomonitoring Urdaibai estuary 

Notes

Acknowledgments

This work was supported by the ETORTEK programme of the Basque Government through the Berrilur II project (IE06-179).

References

  1. Astley KN, Meigh HC, Glegg GA, Braven J, Depledge MH (1999) Multi-variate analysis of biomarker responses in Mytilus edulis and Carcinus maenas from the Tees Estuary (UK). Mar Pollut Bull 39:145–154. doi: 10.1016/S0025-326X(99)00061-2 CrossRefGoogle Scholar
  2. Bartolomé L (2007) Biomonitoring of PAHs and trace metals after the Prestige oil spill. Bioaccumulation processes and partitioning paths of the contaminants, Ph.D. Thesis, Leioa, SpainGoogle Scholar
  3. Bechmann IE, Sturup S, Kristensen LV (2000) High resolution inductively coupled plasma mass spectrometry (HR-ICPMS) determination and multivariate evaluation of 10 trace elements inmussels from 7 sites in Limfjorden, Denmark. Fresen J Anal Chem 368:708–714. doi: 10.1007/s002160000576 CrossRefGoogle Scholar
  4. Boyden CR (1974) Trace element content and body size in mollusc. Nature 251:311–314. doi: 10.1038/251311a0 CrossRefGoogle Scholar
  5. Deming SN, Morgan SL (1993) Experimental design: a chemometric approach. Elsevier, AmsterdamGoogle Scholar
  6. Esbensen KH (1994) Multivariate data analysis: an introduction to multivariate data analysis and experimental design. Camo AB, OsloGoogle Scholar
  7. His E, Beiras R, Seaman MNL (1999) The assessment of marine pollution, bioassays with bivalve ambryos and larvae. ADA Mar Biol 37:1–178. doi: 10.1016/S0065-2881(08)60428-9 CrossRefGoogle Scholar
  8. Hollander M, Myles Wolfe DA, Douglas A (1999) Non-parametric statistical methods. Willey, New YorkGoogle Scholar
  9. Mardia KV, Kent JT, Bibby JM (1989) Multivariate analysis. Academic Press, LondonGoogle Scholar
  10. Mora S, Fowler S, Wyse E, Azemard S (2004) Distribution of heavy metals in marine bivalves, fish and coastal sediments in the Gulf and Gulf of Oman. Mar Pollut Bull 49:410–424. doi: 10.1016/j.marpolbul.2004.02.029 CrossRefGoogle Scholar
  11. Newman MC (1995) Quantitative methods in aquatic ecotoxicology. CRC press, Boca RatonGoogle Scholar
  12. Phillips DJH, Rainbow PS (1993) Biomonitoring of trace aquatic contaminants. Elsevier Science Publishers Ltd, LondonGoogle Scholar
  13. Quiniou F, Damiens G, Gnassia M, Geffard A, Mouneyrac C, Budzinski H, Romeo M (2007) Marine water quality assessment using transplanted oyster larvae. Environ Int 33:27–33. doi: 10.1016/j.envint.2006.06.020 CrossRefGoogle Scholar
  14. Rainbow PS (1995) Biomonitoring of heavy metal availability in the marine environment. Mar Pollut Bull 31:183–192. doi: 10.1016/0025-326X(95)00116-5 CrossRefGoogle Scholar
  15. Romeo M, Hoarau P, Garello G, Gnassia-Barelli M, Girard JP (2003) Mussel transplantation and biomarkers as useful tools for assessing water quality in the NW Mediterranean. Environ Pollut 122:369–378. doi: 10.1016/S0269-7491(02)00303-2 CrossRefGoogle Scholar
  16. Sidoumou Z, Gnassia M, Siau Y, Morton V, Romeo M (2006) Heavy metal concentrations in molluscs from the Senegal coast. Environ Int 32:384–387. doi: 10.1016/j.envint.2005.09.001 CrossRefGoogle Scholar
  17. Swertz OC (1996) The detectable trend: an aid for designing a monitoring Programme. Report of the Working Group on Statistical Aspects of Environmental Monitoring (WGSAEM). ICES CM 1996/D:1, Annex 7, 60–66Google Scholar
  18. Szefer P (2002) Metals, metalloids and radionuclides in the Baltic Sea ecosystem. Elsevier Science, AmsterdamGoogle Scholar
  19. Wackernagel H (2003) Multivariate geostatistic. An introduction with application, vol III. Springer, New YorkGoogle Scholar
  20. Wade TL, Wong JM, Brooks JM, Sweet ST (1993) Sampling analytical methods of the National status and trends program national benthic surveillance and mussel watch projects, vol II. NOAA, USAGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • J. C. Raposo
    • 1
  • L. Bartolomé
    • 1
    Email author
  • E. Cortazar
    • 1
  • G. Arana
    • 1
  • M. Zabaljauregui
    • 1
  • A. de Diego
    • 1
  • O. Zuloaga
    • 1
  • J. M. Madariaga
    • 1
  • N. Etxebarria
    • 1
  1. 1.Department of Analytical ChemistryUniversity of the Basque CountryBilbaoSpain

Personalised recommendations