Skip to main content
Log in

Behavioral Responses of Daphnia Magna to Stresses of Chemicals with Different Toxic Characteristics

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Behavior of an organism is affected by exposure to toxic chemicals. However, less has been known about behavioral responses of an organism to stresses of toxic chemicals with different toxic characteristics. In present work, Daphnia magna Straus was exposed to gradient concentrations of deltamethrin, chlorothalonil and nitrofen and the behavioral changes of Daphnia magna under different stress were examined. The results showed that the behavioral responses of Daphnia magna to the tested chemicals were affected in general by exposure concentration, rather than toxic characteristics of the chemicals. The duration of avoidance response (DAR) was in a power regression relationship with the toxic unit (TU), defined as the ratio of exposure concentration of the tested chemical to its LC50–48. DAR was independent of the toxic characteristics of chemicals. However, significant behavior adjustment could be observed after exposure to deltamethrin while only step-by-step decrease in behavior strength could be observed when exposed to chlorothalonil and nitrofen. It was suggested from the observation that avoidance behaviors of Daphnia magna to exposures of chemicals with different toxic characteristics could be similar, while their specific response could be different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baier-Anderson C, Anderson RS (2000) The effects of Chlorothalonilon Oyster hemocyte activation: phagocytosis, reduced pyridine nucleotides, and reactive oxygen species production. Environ Res A 83:72–78. doi:10.1006/enrs.1999.4033

    Article  CAS  Google Scholar 

  • Bejarano AC, Chandler GT, Decho AW (2005) Influence of natural dissolved organic matter (DOM) on acute and chronic toxicity of the pesticides chlorothalonil, chlorpyrifos and fipronil on the meiobenthic estuarine copepod Amphiascus tenuiremis. J Exp Mar Biol Ecol 321:43–57. doi:10.1016/j.jembe.2005.01.003

    Article  CAS  Google Scholar 

  • Brandsma AE, Tibboel D, Vulto IM, de Vijlder JJ, Ten Have-Opbroek AA, Wiersinga WM (1994) Inhibition of T3-receptor bindingby nitrofen. Biochim Biophys Acta 1201:266–270

    CAS  Google Scholar 

  • Caux PY, Kent RA, Fan GT, Stephenson GL (1996) Environmental fate and effects of chlorothalonil: a Canadian perspective. Crit Rev Env Sci Tec 26:45–93

    Article  CAS  Google Scholar 

  • Duquesne S (2006) Effects of an organophosphate on Daphnia magna at suborganismal and organismal levels: implications for population dynamics. Ecotox Environ Safe 65:145–150. doi:10.1016/j.ecoenv.2006.01.008

    Article  CAS  Google Scholar 

  • Erik H, Finn-Arne W, Joachim S, Svante W, Holger U (2005) Avoidance behavior and brain monoamines in fish. Brain Res 1032:104–110. doi:10.1016/j.brainres.2004.10.050

    Article  CAS  Google Scholar 

  • Eriksson Wiklund A-K, Börjesson T, Wiklund SJ (2006) Avoidance response of sediment living amphipods to zinc pyrithione as a measure of sediment toxicity. Mar Pollut Bull 52:96–99. doi:10.1016/j.marpolbul.2005.08.023

    Article  CAS  Google Scholar 

  • Ernst W, Doe K, Jonah P, Young J, Julien G, Hennigar P (1991) The toxicity of chlorothalonil to aquatic fauna and the impact of its operational use on a pond ecosystem. Arch Environ Contam Toxicol 21:1–9. doi:10.1007/BF01055550

    Article  CAS  Google Scholar 

  • Fernández-Alba AR, Hernando MD, Piedra L, Chisti Y (2002) Toxicity evaluation of single and mixed antifouling biocides measured with acute toxicity bioassays. Anal Chim Acta 456:303–312. doi:10.1016/S0003-2670(02)00037-5

    Article  Google Scholar 

  • Gerhardt A (2001) A new multispecies freshwater biomonitor for ecological relevant control of surface waters. In: Butterworth F, Gunatilaka A, Gonsebatt ME (eds) Biomonitors and biomarkers as indicators of environmental change: environmental science forum 56, vol 2. Kluwer-Plenum Press, New York

  • Gerhardt A, Janssens B, Mo Z, Wang C, Yang M, Wang Z (2002) Short-term responses of Oryzias latipes (Pisces: Adrianichthyidae) and Macrobrachium nipponense (Crustacea: Palaemonidae) to municipal and pharmaceutical wastewater in Beijing, China: survival, behavior, biochemical biomarkers. Chemosphere 47:35–47. doi:10.1016/S0045-6535(01)00223-5

    Article  CAS  Google Scholar 

  • Greer JJ, Babiuk RP, Thebaud B (2003) Etiology of congenital diaphragmatic hernia: the retinoid hypothesis. Pediatr Res 53:726–730. doi:10.1203/01.PDR.0000062660.12769.E6

    Article  CAS  Google Scholar 

  • Heckmann L-H, Callaghan A, Hooper HL, Connon R, Hutchinson TH, Maund SJ, Sibly RM (2007) Chronic toxicity of ibuprofen to Daphnia magna: effects on life history traits and population dynamics. Toxicol Lett 172:137–145. doi:10.1016/j.toxlet.2007.06.001

    Article  CAS  Google Scholar 

  • ISO (1996a) Water quality-determination of the acute lethal toxicity of substances to a freshwater fish [Brachdanio rerio (Hamilton-Buchanan), Teleostei, Cyprinidae]—part 3: flow-through method. ISO/DIS 7346/3

  • ISO (1996b) Water quality – determination of the mobility of Daphnia magna Straus (Cladocera, Crustacea). ISO 6341, Geneva, Switzerland

    Google Scholar 

  • Kling DE, Aidlen JT, Fisher JC, Kinane TB, Donahoe PK, Schnitzer JJ (2005) Nitrofen induces a redox-dependent apoptosis associated with increased p38 activity in P19 teratocarcinoma cells. Toxicol In Vitro 19:1–10. doi:10.1016/j.tiv.2004.04.010

    Article  CAS  Google Scholar 

  • Lefcort H, Abbott DP, Cleary DA, Howell E, Keller NC, Smith MM (2004) Aquatic snails from mining sites have evolved to detect and avoid heavy metals. Arch Environ Contam Toxicol 46:478–484. doi:10.1007/s00244-003-3029-2

    Article  CAS  Google Scholar 

  • Mandrillon A, Saglio P (2007) Waterborne amitrole affects the predator – prey relationship between common frog tadpoles (Rana temporaria) and larval spotted salamander (Salamandra salamandra). Arch Environ Contam Toxicol 53:233–240. doi:10.1007/s00244-006-0229-6

    Article  CAS  Google Scholar 

  • Manson JM (1986) Mechanism of nitrofen teratogenesis. Environ Health Persp 70:137–147. doi:10.2307/3430350

    Article  CAS  Google Scholar 

  • Martínez-Jerónimo F, Villaseňor R, Ríos G, Espinosa-Chavez F (2005) Toxicity of the crude oil water-soluble fraction and kaolin-adsorbed crude oil on Daphnia magna (Crustacea: Anomopoda). Arch Environ Contam Toxicol 48:444–449. doi:10.1007/s00244-003-0220-4

    Article  CAS  Google Scholar 

  • Mascrez B, Mark M, Dierich A, Ghyselinck NB, Kastner P, Chambon P (1998) The RXR (alpha) ligand-dependent activation function 2 (AF-2) is important for mouse development. Development 125:4691–4707

    CAS  Google Scholar 

  • Moore A, Waring CP (2001) The effects of a synthetic pyrethroid pesticide on some aspects of reproduction in Atlantic salmon (Salmo salar L.). Aquat Toxicol 52:1–12. doi:10.1016/S0166-445X(00)00133-8

    Article  CAS  Google Scholar 

  • Narahashi T, Frey J, Ginsburg K, Roy M (1992) Sodium and GABA-activated channels as targets of pyrethroids and cyclodienes. Toxicol Lett 64:429–436. doi:10.1016/0378-4274(92)90216-7

    Article  Google Scholar 

  • Pedder SCJ, Maly EJ (1985) The effect of lethal copper solutions on the behavior of rainbow trout, Salmo gairdneri. Arch Environ Contam Toxicol 14:501–507. doi:10.1007/BF01055537

    Article  CAS  Google Scholar 

  • Pimpão CT, Zampronio AR, Silva de Assis HC (2007) EVects of deltamethrin on hematological parameters and enzymatic activity in Ancistrus multispinis (Pisces, Teleostei). Pestic Biochem Phys 88:122–127. doi:10.1016/j.pestbp.2006.10.002

    Article  CAS  Google Scholar 

  • Ren ZM, Ma M, Wang ZJ (2006) On-line biomonitoring of accidental drinking water organophosphorous pesticides contamination. Water Wastewater Eng 32:17–20

    Google Scholar 

  • Ren ZM, Zha JM, Ma M, Wang ZJ, Gerhardt A (2007) The early warning of aquatic organophosphorus pesticide contamination by on-line monitoring behavioral changes of Daphnia magna. Environ Monit Assess 134:373–383. doi:10.1007/s10661-007-9629-y

    Article  CAS  Google Scholar 

  • Reynaldi S, Duquesne S, Jung K, Liess M (2006) Linking feeding activity and maturation of Daphnia magna following short-term exposure to fenvalerate. Environ Toxicol Chem 25:1826–1830. doi:10.1897/05-469R.1

    Article  CAS  Google Scholar 

  • Riddell DJ, Culp JM, Baird DJ (2005) Behavioral responses to sublethal cadmium exposure within an experimental aquatic food web. Environ Toxicol Chem 24:431–441. doi:10.1897/04-026R.1

    Article  CAS  Google Scholar 

  • Rosa E, Barata C, Damasio J, Bosch MP, Guerrero A (2006) Aquatic ecotoxicity of a pheromonal antagonist in Daphnia magna and Desmodesmus subspicatus. Aquat Toxicol 79:296–303. doi:10.1016/j.aquatox.2006.06.019

    Article  CAS  Google Scholar 

  • Sager DR, Hocutt CH, StaufferJr JR (2000) Avoidance behavior of Morone americana, Leiostomus xanthurus and Brevoortia tyrannus to strobe light as a method of impingement mitigation. Environ Sci Policy 3:393–403. doi:10.1016/S1462-9011(00)00046-0

    Article  Google Scholar 

  • Saglio P, Trijasse S (1996) Behavioral effects of waterborne carbofuran in Goldfish. Arch Environ Contam Toxicol 31(2):232–238. doi:10.1007/BF00212371

    Article  CAS  Google Scholar 

  • Sandbacka M, Christianson I, Isomaa B (2000) The acute toxicity of surfactants on fish cells, Daphnia magna and fish-a comparative study. Toxicol In Vitro 14:61–68. doi:10.1016/S0887-2333(99)00083-1

    Article  CAS  Google Scholar 

  • Scarfe AD, Jones KA, Steele CW, Kleerekoper H, Corbett M (1983) Locomotor behavior of four marine teleosts in response to sublethal copper exposure. Aquat Toxicol 2:335–353. doi:10.1016/0166-445X(82)90020-0

    Article  Google Scholar 

  • Selye H (1973) The evolution of the stress concept. Am Sci 61:692–699

    CAS  Google Scholar 

  • Şener Ural M, Sağlam N (2005) A study on the acute toxicity of pyrethroid deltamethrin on the fry rainbow trout (Oncorhynchus mykiss Walbaum, 1792). Pestic Biochem Phys 83:124–131. doi:10.1016/j.pestbp.2005.04.004

    Article  CAS  Google Scholar 

  • Soderlund DM, Bloomquist JR (1989) Neurotoxic actions of pyrethroid insecticides. Ann Rev Entomol 34:77–96. doi:10.1146/annurev.en.34.010189.000453

    Article  CAS  Google Scholar 

  • Steele CW, Strickler-Shaw S, Taylor DH (1989) Behavior of tadpoles of the bullfrog, Rana catesbeiana, in response to sublethal lead exposure. Aquat Toxicol 14:331–343. doi:10.1016/0166-445X(89)90031-3

    Article  CAS  Google Scholar 

  • Sturm A, Hansen PD (1999) Altered cholinesterase and monooxygenase levels in Daphnia magna and Chironomus riparius exposed to environmental pollutants. Ecotox Environ Safe 42:9–15. doi:10.1006/eesa.1998.1721

    Article  CAS  Google Scholar 

  • Tillman RW, Siegel MR, Long JW (1973) Mechanism of action and fate of the fungicide chlorothalonil (2,4,5,6-tetrachloroisophalonitrile) in biological systems: 1. Reactions with cells and subcellular components of Saccharomyces pastorians. Pestic Biochem Phys 3:160–167. doi:10.1016/0048-3575(73)90100-4

    Article  CAS  Google Scholar 

  • Tomasik P, Warren DM (1996) The use of Daphnia in studies of metal pollution of aquatic systems. Environ Res 4:25–64

    CAS  Google Scholar 

  • Untersteiner H, Kahapka J, Kaiser H (2003) Behavioral response of the cladoceran Daphnia magna STRAUS to sublethal Copper stress – validation by image analysis. Aquat Toxicol 65:435–442

    CAS  Google Scholar 

  • Villegas-Navarro A, Romero GMC, Rosas LE, Dominguez AR, Sachetin MW (1999) Evaluation of Daphnia magna as an indicator of toxicity and treatment efficacy of textile wastewaters. Environ Int 25(5):619–624. doi:10.1016/S0160-4120(99)00034-3

    Article  CAS  Google Scholar 

  • West CW, Ankley GT (1998) A laboratory assay to assess avoidance of contaminated sediments by the freshwater Oligochaete Lumbriculus variegates. Arch Environ Contam Toxicol 35:20–24. doi:10.1007/s002449900343

    Article  CAS  Google Scholar 

  • WHO (World Health Organization) (1990) Deltamethrin, environmental health criteria 97. World Health Organization, Geneva, p 133

    Google Scholar 

  • Wiles JA, Jepson PC (1994) Substrate-mediated toxicity of deltamethrin residues to beneficial invertebrates: estimation of toxicity factors to aid risk assessment. Arch Environ Contam Toxicol 27:384–391. doi:10.1007/BF00213175

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by Chinese Academy of Science (KZCX1-YW-06), National High-Tech R&D Program of China (2007AA061502) and Tianjin Municipality (06FZZDSH00900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijian Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, Z., Li, Z., Ma, M. et al. Behavioral Responses of Daphnia Magna to Stresses of Chemicals with Different Toxic Characteristics. Bull Environ Contam Toxicol 82, 310–316 (2009). https://doi.org/10.1007/s00128-008-9588-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-008-9588-1

Keywords

Navigation