Skip to main content

Reduction in Rat Oocyte Fertilizability Mediated by S-(1, 2-dichlorovinyl)-l-cysteine: A Trichloroethylene Metabolite Produced by the Glutathione Conjugation Pathway

Abstract

Trichloroethylene (TCE), a commonly used industrial degreasing solvent and environmental toxicant, reduces rat oocyte fertilizability by an incompletely understood mechanism. Previous evidence implicated cytochrome P450 dependent oxidation of TCE. The current study investigated a second pathway, glutathione conjugation using S-(1,2-dichlorovinyl)-l-cysteine (DCVC), a mutagenic and cytotoxic TCE-metabolite. In vitro exposure of oocytes and in vivo exposure of females to DCVC significantly reduced oocyte fertilizability (63% vs. 26%; p < 0.005 and 60% vs. 36%; p < 0.005, respectively). Reduced fertilizability of oocytes following in vivo TCE exposure may be mediated partially by the glutathione conjugation pathway.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Bartosiewicz M, Penn S, Buckpitt A (2001) Applications of gene arrays in environmental toxicology: fingerprints of gene regulation associated with cadmium chloride, benzo(a)pyrene, and trichloroethylene. Environ Health Perspect 109:71–74. doi:10.2307/3434924

    Article  CAS  Google Scholar 

  2. Berger T, Horner CM (2003) In vivo exposure of female rats to toxicants may affect oocyte quality. Reprod Toxicol 17:273–281. doi:10.1016/S0890-6238(03)00009-1

    Article  CAS  Google Scholar 

  3. Cummings BS, Parker JC, Lash LH (2000) Role of cytochrome P450 and glutathione S-transferase alpha in the metabolism and cytotoxicity of trichloroethylene in rat kidney. Biochem Pharmacol 59:531–543. doi:10.1016/S0006-2952(99)00374-3

    Article  CAS  Google Scholar 

  4. DuTeaux SB, Hengel MJ, DeGroot DE, Jelks KA, Miller MG (2003) Evidence for trichloroethylene bioactivation and adduct formation in the rat epididymis and efferent ducts. Biol Reprod 69:771–779. doi:10.1095/biolreprod.102.014845

    Article  CAS  Google Scholar 

  5. Goeptar AR, Commandeur JN, van Ommen B, van Bladeren PJ, Vermeulen NP (1995) Metabolism and kinetics of trichloroethylene in relation to toxicity and carcinogenicity. Relevance of the mercapturic acid pathway. Chem Res Toxicol 8:3–21. doi:10.1021/tx00043a001

    Article  CAS  Google Scholar 

  6. Lash LH, Fisher JW, Lipscomb JC, Parker JC (2000) Metabolism of trichloroethylene. Environ Health Perspect 108:177–200. doi:10.2307/3454518

    Article  CAS  Google Scholar 

  7. Rabahi F, Brule S, Sirois J, Beckers JF, Silversides DW, Lussier JG (1999) High expression of bovine alpha glutathione S-transferase (GSTA1, GSTA2) subunits is mainly associated with steroidogenically active cells and regulated by gonadotropins in bovine ovarian follicles. Endocrinology 140:3507–3517. doi:10.1210/en.140.8.3507

    Article  CAS  Google Scholar 

  8. Rahilly M, Carder PJ, al Nafussi A, Harrison DJ (1991) Distribution of glutathione S-transferase isoenzymes in human ovary. J Reprod Fertil 93:303–311. doi:10.1530/jrf.0.0930303

    CAS  Google Scholar 

  9. Rozell B, Hansson HA, Guthenberg C, Tahir MK, Mannervik B (1993) Glutathione transferases of classes alpha, mu and pi show selective expression in different regions of rat kidney. Xenobiotica 23:835–849

    CAS  Article  Google Scholar 

  10. Rutenburg AM, Kim H, Fischbein JW, Hanker JS, Wasserkrug HL, Seligman AM (1969) Histochemical and ultrastructural demonstration of gamma-glutamyl transpeptidase activity. J Histochem Cytochem 17:517–526

    CAS  Google Scholar 

  11. Scott CS, Cogliano VJ (2000) Trichloroethylene health risks––state of the science. Environ Health Perspect 108(Suppl 2):159–160. doi:10.2307/3454515

    Google Scholar 

  12. Sugiura K, Eppig JJ (2005) Society for Reproductive Biology Founders’ Lecture 2005. Control of metabolic cooperativity between oocytes and their companion granulosa cells by mouse oocytes. Reprod Fertil Dev 17:667–674. doi:10.1071/RD05071

    Article  CAS  Google Scholar 

  13. Tiltman AJ, Haffajee Z (1999) Distribution of glutathione S-transferases in the human ovary: an immunohistochemical study. Gynecol Obstet Invest 47:247–250. doi:10.1159/000010115

    Article  CAS  Google Scholar 

  14. Toft E, Becedas L, Soderstrom M, Lundqvist A, Depierre JW (1997) Glutathione transferase isoenzyme patterns in the rat ovary. Chem Biol Interact 108:79–93. doi:10.1016/S0009-2797(97)00095-1

    Article  CAS  Google Scholar 

  15. Wu KL, Berger T (2007) Trichloroethylene metabolism in the rat ovary reduces oocyte fertilizability. Chem Biol Interact 170:20–30. doi:10.1016/j.cbi.2007.06.038

    Article  CAS  Google Scholar 

  16. Wu KL, Berger T (2008) Ovarian gene expression is stable after exposure to trichloroethylene. Toxicol Lett 177:59–65. doi:10.1016/j.toxlet.2007.12.008

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Portions of this paper were presented at the 39th Annual SSR Meeting, Omaha, Nebraska, July 29–August 1, 2006. Funding for KLW was provided in part by the National Institutes of Health, National Institute of Child Health and Human Development (NICHD) training grant in Fertilization and Early Development (T32 HD071131), and the University of California Toxic Substances Research and Teaching Program (UC TSR&TP) student fellowship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Trish Berger.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wu, K.L., Berger, T. Reduction in Rat Oocyte Fertilizability Mediated by S-(1, 2-dichlorovinyl)-l-cysteine: A Trichloroethylene Metabolite Produced by the Glutathione Conjugation Pathway. Bull Environ Contam Toxicol 81, 490–493 (2008). https://doi.org/10.1007/s00128-008-9509-3

Download citation

Keywords

  • Trichloroethylene
  • Oocyte fertilizability
  • Ovary
  • Reproduction