Skip to main content

Influence of Elevated Carbon Dioxide and Ozone on the Foliar Nonvolatile Terpenoids in Ginkgo Biloba

Abstract

The aim of this study was to determine the effects of elevated O3 and elevated CO2, singly and in combination, on the contents of nonvolatile terpenoids in leaves of Ginkgo Biloba. The results showed that elevated CO2, alone and in combination with elevated O3 increased concentrations of all the determined terpenoids, while elevated O3 alone only increased concentration of bilobalide. These results demonstrated that the metabolism of terpenoids in ginkgo leaves was more sensitive to elevated CO2 than elevated O3.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1

References

  1. Constable JVH, Guenther AB, Schimel DS, Monson RK (1999) Modelling changes in VOC emission in response to climate change in the continental United States. Global Change Biol 5:791–806. doi:10.1046/j.1365-2486.1999.00273.x

    Article  Google Scholar 

  2. He XY, Ruan YN, Chen W, Lu T (2006) Responses of the anti-oxidative system in leaves of Ginkgo Biloba to elevated ozone concentration in an urban area. Bot Stud 47:409–416

    CAS  Google Scholar 

  3. Heiden AC, Hoffman T, Kahl J, Kley D, Klockow D, Langebartels C, Mehlhorn H, Sandermann JH, Schraudner M, Wildt J (1999) Emission of volatile organic compounds from ozone-exposed plants. Ecol Appl 9:1160–1167. doi:10.1890/1051-0761(1999)009[1160:EOVOCF]2.0.CO;2

    Article  Google Scholar 

  4. IPCC (2001) Third assessment report–climate change 2001: the scientific basis. Cambridge University Press, Cambridge UK

    Google Scholar 

  5. Langenheim JH (1994) Higher plant terpenoids: a phytocentric overview of their ecological roles. J Chem Ecol 20:1223–1280. doi:10.1007/BF02059809

    Article  CAS  Google Scholar 

  6. Litvak ME, Monson RK (1998) Patterns of induced and constitutive monoterpene production in conifer needles in relation to insect herbivory. Oecologia 114:531–540. doi:10.1007/s004420050477

    Article  Google Scholar 

  7. Loreto F, Mannozzi M, Maris C, Nascetti P, Ferranti F, Pasqualini S (2001) Ozone quenching properties of isoprene and its antioxidant role in leaves. Plant Physiol 126:993–1000. doi:10.1104/pp.126.3.993

    Article  CAS  Google Scholar 

  8. Monson RK (2002) Volatile organic compound emissions from terrestrial ecosystems: a primary biological control over atmospheric chemistry. Israel J Chem 42:29–42. doi:10.1560/0JJC-XQAA-JX0G-FXJG

    Article  CAS  Google Scholar 

  9. Peltonen PA, Vapaavuori E, Julkunen-Tiitto R (2005) Accumulation of phenolic compounds in birch leaves is changed by elevated carbon dioxide and ozone. Global Change Biol 11:1305–1324. doi:10.1111/j.1365-2486.2005.00979.x

    Article  Google Scholar 

  10. Possell M, Hewitt NC, Beerling DJ (2005) The effects of glacial atmospheric CO2 concentrations and climate on isoprene emissions by vascular plants. Global Change Biol 11:60–69. doi:10.1111/j.1365-2486.2004.00889.x

    Article  Google Scholar 

  11. Rosenstiel TN, Potosnak MJ, Griffin KL, Fall R, Monson RK (2003) Increased CO2 uncouples growth from isoprene emission in an agriforest ecosystem. Nature 421:256–259. doi:10.1038/nature01312

    Article  CAS  Google Scholar 

  12. Sallas L, Kainulainen P, Utriainen J, Holopainen T, Holopainen J (2001) The influence of elevated O3 and CO2 concentrations on secondary metabolites of Scots pine (Pinus sylvestris L.) seedlings. Global Change Biol 7:303–311. doi:10.1046/j.1365-2486.2001.00408.x

    Article  Google Scholar 

  13. Valkama E, Koricheva J, Oksanen E (2007) Effects of elevated O3, alone and in combination with elevated CO2, on tree leaf chemistry and insect herbivore performance: a meta-analysis. Global Change Biol 13:184–201. doi:10.1111/j.1365-2486.2006.01284.x

    Article  Google Scholar 

  14. Vuorinen T, Nerg AM, Holopainen JK (2004) Ozone exposure triggers the emission of herbivore-induced plant volatiles, but does not disturb tritrophic signalling. Environ Pollut 131:305–311. doi:10.1016/j.envpol.2004.02.027

    Article  CAS  Google Scholar 

  15. Vuorinen T, Nerg A-M, Vapaavuori E, Holopainen J (2005) Emissions of volatile organic compounds from two silver birch (Betula pendula Roth) clones grown under elevated CO2 and O3 concentrations. Atmos Environ 39:1185–1197. doi:10.1016/j.atmosenv.2004.09.077

    Article  CAS  Google Scholar 

  16. Zhou X, Zhang XQ, Yuan M, Wang DP (2005) Quantitative determination of ginkgofides by liquid chromatography-electrospray mass spectrometry. China J Chinese Mater Med 24:1915–1918 in Chinese

    Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China Important Project 90411019. We are grateful to Professor Dali Tao for critical reading of the manuscript, and we thank Dr. Petri A. Peltonen (Finnish forest research institute, Finland) for the Graphic Vector Analysis assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wei Huang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Huang, W., He, X., Chen, W. et al. Influence of Elevated Carbon Dioxide and Ozone on the Foliar Nonvolatile Terpenoids in Ginkgo Biloba . Bull Environ Contam Toxicol 81, 432–435 (2008). https://doi.org/10.1007/s00128-008-9485-7

Download citation

Keywords

  • Ginkgo Biloba
  • Terpenoids
  • Elevated CO2
  • Elevated O3