Skip to main content

Urinary Arsenic Speciation and its Correlation with 8-OHdG in Chinese Residents Exposed to Arsenic Through Coal Burning

Abstract

In contrast to arsenicosis caused by consumption of water contaminated by naturally occurring inorganic arsenic, human exposure to this metalloid through coal burning has been rarely reported. In this study, arsenic speciation and 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels in urine were determined in the Chinese residents exposed to arsenic through coal burning in Guizhou, China, an epidemic area of chronic arsenic poisoning caused by coal burning. The urinary concentrations of inorganic arsenic (iAs), monomethylarsonic acid (MMA), dimethylarsinic acid (DMA) and total arsenic (tAs) of high-arsenic exposed subjects were significantly higher than those of low-arsenic exposed residents. A biomarker of oxidative DNA damage, urinary 8-OHdG level was significantly higher in high-arsenic exposed subjects than that of low exposed. Significant positive correlations were found between 8-OHdG levels and concentrations of iAs, MMA, DMA and tAs, respectively. In addition, a significant negative correlation was observed between 8-OHdG levels and the secondary methylation ratio (DMA/(MMA + DMA)). The results suggest that chronic arsenic exposure through burning coal rich in arsenic is associated with oxidative DNA damages, and that secondary methylation capacity is potentially related to the susceptibility of individuals to oxidative DNA damage induced by arsenic exposure through coal burning in domestic living.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Abernathy CO, Liu YP, Longfellow D, Aposhian HV, Beck B, Fowler B, Goyer R, Menzer R, Rossman T, Thompson C, Waalkes M (1999) Arsenic: health effects, mechanisms of actions, and research issues. Environ Health Perspect 107(7):593–597. doi:10.2307/3434403

    Article  CAS  Google Scholar 

  2. An D, Li DS, Liang Y, Jing ZJ (2007) Unventilated indoor coal-fired stoves in Guizhou province, China: reduction of arsenic exposure through behavior changes resulting from mitigation and health education in populations with arsenicosis. Environ Health Perspect 115:659–662

    CAS  Google Scholar 

  3. Aposhian HV (1997) Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity. Annu Rev Pharmacol Toxicol 37:397–419. doi:10.1146/annurev.pharmtox.37.1.397

    Article  CAS  Google Scholar 

  4. Flora SJ, Bhadauria S, Kannan GM, Singh N (2007) Arsenic induced oxidative stress and the role of antioxidant supplementation during chelation: a review. J Environ Biol 28(2 Suppl):333–347

    CAS  Google Scholar 

  5. Gebel TW (1999) Arsenic and drinking water contamination. Science 283(5407):1458–1459. doi:10.1126/science.283.5407.1455e

    Article  CAS  Google Scholar 

  6. Hayakawa T, Kobayashi Y, Cui X, Hirano S (2005) A new metabolic pathway of arsenite: arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch Toxicol 79:183–191. doi:10.1007/s00204-004-0620-x

    Article  CAS  Google Scholar 

  7. Huang C, Ke Q, Costa M, Shi X (2004) Molecular mechanisms of arsenic carcinogenesis. Mol Cell Biochem 255(1–2):57–66. doi:10.1023/B:MCBI.0000007261.04684.78

    Article  CAS  Google Scholar 

  8. Karihtala P, Soini Y (2007) Reactive oxygen species and antioxidant mechanisms in human tissues and their relation to malignancies. APMIS 115(2):81–103. doi:10.1111/j.1600-0463.2007.apm_514.x

    Article  CAS  Google Scholar 

  9. Liu J, Zheng B, Aposhian HV, Zhou Y, Chen ML, Zhang A, Waalkes MP (2002) Chronic arsenic poisoning from burning high-arsenic-containing coal in Guizhou, China. Environ Health Perspect 110(2):119–122

    Google Scholar 

  10. Nesnow S, Roop BC, Lambert G, Kadiiska M, Mason RP, Cullen WR, Mass MJ (2002) DNA damage induced by methylated trivalent arsenicals is mediated by reactive oxygen species. Chem Res Toxicol 15(12):1627–1634. doi:10.1021/tx025598y

    Article  CAS  Google Scholar 

  11. Nickson R, McArthur J, Burgess W, Ahmed KM, Ravenscroft P, Rahman M (1998) Arsenic poisoning of Bangladesh groundwater. Nature 395(6700):338. doi:10.1038/26387

    Article  CAS  Google Scholar 

  12. Nordstrom DK (2002) Public health. Worldwide occurrences of arsenic in ground water. Science 296(5576):2143–2145. doi:10.1126/science.1072375

    Article  CAS  Google Scholar 

  13. Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300(5621):939–944. doi:10.1126/science.1081903

    Article  CAS  Google Scholar 

  14. Petrick JS, Ayala-Fierro F, Cullen WR, Carter DE, Aposhian HV (2000) Monomethylarsonous acid (MMAIII) is more toxic than arsenite in Chang human hepatocytes. Toxicol Appl Pharmacol 163:203–207. doi:10.1006/taap.1999.8872

    Article  CAS  Google Scholar 

  15. Pi J, Kumagai Y, Sun G, Yamauchi H, Yoshida T, Iso H, Endo A, Yu L, Yuki K, Miyauchi T, Shimojo N (2000) Decreased serum concentrations of nitric oxide metabolites among Chinese in an endemic area of chronic arsenic poisoning in Inner Mongolia. Free Radic Biol Med 28(7):1137–1142. doi:10.1016/S0891-5849(00)00209-4

    Article  CAS  Google Scholar 

  16. Pi J, Yamauchi H, Kumagai Y, sun G, Yoshida T, Aikawa H, Hopenhayn-Rich C, Shimojo N (2002) Evidence for induction of oxidative stress caused by chronic exposure of Chinese residents to arsenic contained in drinking water Environ Health Perspect 110:331–336

    CAS  Google Scholar 

  17. Pi J, Horiguchi S, Sun Y, Nikaido M, Shimojo N, Hayashi T, Yamauchi H, Itoh K, Yamamoto M, Sun G, Waalkes MP, Kumagai Y (2003a) A potential mechanism for the impairment of nitric oxide formation caused by prolonged oral exposure to arsenate in rabbits. Free Radic Biol Med 35(1):102–113. doi:10.1016/S0891-5849(03)00269-7

    Article  CAS  Google Scholar 

  18. Pi J, Qu W, Reece JM, Kumagai Y, Waalkes MP (2003b) Transcription factor Nrf2 activation by inorganic arsenic in cultured keratinocytes: involvement of hydrogen peroxide. Exp Cell Res 290:234–245. doi:10.1016/S0014-4827(03)00341-0

    Article  CAS  Google Scholar 

  19. Saito S, Yamauchi H, Hasui Y, Kurashige J, ochi H, Yoshida K (2000) Quantitative determination of urinary 8-hydroxydeoxyguanosine (8-OH-dg) by using ELISA. Res Commun Mol Pathol Pharmacol 107:39–44

    CAS  Google Scholar 

  20. Shi H, Shi X, Liu KJ (2004) Oxidative mechanism of arsenic toxicity and carcinogenesis. Mol Cell Biochem 255(1–2):67–78. doi:10.1023/B:MCBI.0000007262.26044.e8

    Article  CAS  Google Scholar 

  21. Styblo M, Del Razo LM, Vega L, Germolec DR, LeCluyse EL, Hamilton GA, Reed W, Wang C, Cullen WR, Thomas DJ (2000) Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol 74(6):289–99. doi:10.1007/s002040000134

    Article  CAS  Google Scholar 

  22. Sun G, Liu S, Li B, Li X, Sun X, Guo X, Qian C, Pi J (2001) Current situation of endemic arsenicosis in China. Environ Sci 5:425–434

    Google Scholar 

  23. Sun G (2004) Arsenic contamination and arsenicosis in China. Toxicol Appl Pharmacol 198(3):268–271. doi:10.1016/j.taap.2003.10.017

    Article  CAS  Google Scholar 

  24. Sun G, Li X, Pi J, Sun Y, Li B, Jin Y, Xu Y (2006) Current research problems of chronic arsenicosis in China. J Health Popul Nutr 24(2):176–181

    Google Scholar 

  25. Sun G, Xu YY, Li X, Jin Y, Li B, Sun X (2007) Urinary arsenic metabolites in children and adults exposed to arsenic in drinking water in Inner Mongolia, China. Environ Health Perspect 115:648–652

    CAS  Article  Google Scholar 

  26. Tamura S, Tsukahara H, Ueno M, Maeda M, Kawakami H, Sekine K, Mayumi M (2006) Evaluation of a urinary multi-parameter biomarker set for oxidative stress in children, adolescents and young adults. Free Radic Res 40(11):1198–1205. doi:10.1080/10715760600895191

    Article  CAS  Google Scholar 

  27. Wu LL, Chiou CC, Chang PY, Wu JT (2004) Urinary 8-OHdG: a marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin Chim Acta 339(1–2):1–9. doi:10.1016/j.cccn.2003.09.010

    Article  CAS  Google Scholar 

  28. Yamauchi H, Fowler BA (1994) Toxicity and metabolism of inorganic and methylated arsenicals. In: As in environment. part II: human health and ecosystem effects. Wiley, New York, p 35–43

  29. Yamauchi H, Yamamura Y (1984) Metabolism and excretion of orally administered dimethylarsinic acid in the hamster. Toxicol Appl Pharmacol 174:134–140. doi:10.1016/0041-008X(84)90279-5

    Article  Google Scholar 

  30. Zheng B, Ding Z, Huang R, Zhu J, Yu X, Wang A, Zhou D, Mao D, Su H (1999) Issues of health and disease relating to coal use in southwestern China. Int J Coal Geol 40:119–132. doi:10.1016/S0166-5162(98)00064-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (NSFC) research grant 30400362, 30530640 and 30600510. We thank Dr. Dong An and Dr. Dasheng Li (Centre for Disease Control and Prevention of Guizhou, China) for their collaboration of the recruitment of subjects. We also thank Dr. Courtney Woods (The Hamner Institutes for Health Sciences, USA) for her effort on the preparation of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guifan Sun.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, X., Pi, J., Li, B. et al. Urinary Arsenic Speciation and its Correlation with 8-OHdG in Chinese Residents Exposed to Arsenic Through Coal Burning. Bull Environ Contam Toxicol 81, 406–411 (2008). https://doi.org/10.1007/s00128-008-9471-0

Download citation

Keywords

  • Arsenic
  • Arsenic speciation
  • 8-OHdG
  • Oxidative stress
  • Coal
  • Methylation