Skip to main content

Multivariate and Geoaccumulation Index Evaluation in Mangrove Surface Sediment of Mengkabong Lagoon, Sabah


Spatial variations in estuarine intertidal sediment have been often related to such environmental variables as salinity, sediment types, heavy metals and base cations. However, there have been few attempts to investigate the difference condition between high and low tides relationships and to predict their likely responses in an estuarine environment. This paper investigates the linkages between environmental variables and tides of estuarine intertidal sediment in order to provide a basis for describing the effect of tides in the Mengkabong lagoon, Sabah. Multivariate statistical technique, principal components analysis (PCA) was employed to better interpret information about the sediment and its controlling factors in the intertidal zone. The calculation of Geoaccumulation Index (I geo) suggests the Mengkabong mangrove sediments are having background concentrations for Al, Cu, Fe, and Zn and unpolluted for Pb. Extra efforts should therefore pay attention to understand the mechanisms and quantification of different pathways of exchange within and between intertidal zones.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. APHA (1995) Standard methods for the examination of water and waste water, 19th edn. Washington, USA

  2. Church AH (1989) The ionic of the sea. The Phytologist 68:239–247

    Google Scholar 

  3. El Nemr A, Khaled A, Sikaily AE (2006) Distribution and statistical analysis of leachable and total heavy metals in the sediments of the Suez Gulf. Environ Monit Assess 118:89–112. doi:10.1007/s10661-006-0985-9

    Article  CAS  Google Scholar 

  4. Environmental Impact Assessment (1992) Proposed mangrove paradise resort complex on LA 91040377 Tuaran, Sabah. Perunding Sekitar, Sabah

  5. Environmental Indicator Report (2003) The Environment Protection Department (EPD) Sabah: Syarikat Bumi Yakin, Sabah

  6. Grande JA, Borrego J, Morales JA, Torre ML (2003) A description of how metal pollution occurs in the Tinto-Odiel Rias (Huelva-Spain) through the application of cluster analysis. Mar Pollut Bull 46:475–480. doi:10.1016/S0025-326X(02)00452-6

    Article  CAS  Google Scholar 

  7. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110. doi:10.1023/A:1008119611481

    Article  Google Scholar 

  8. Hsue ZY, Chen ZS (2000) Monitoring the changes of redox potential, ph and electrical conductivity of the mangrove soils in Northern Taiwan. Proc Nat Sci Counc 24:143–150

    Google Scholar 

  9. Hussein AH, Rabenhorst MC (2001) Tidal inundation of transgressive coastal areas: pedogenesis of salinization and alkalinization. Soil Sci Soc Am J 65:536–544

    CAS  Google Scholar 

  10. Karbassi AR, Bayati I, Moatta F (2006) Origin and chemical partitioning of heavy metals in riverbed sediments. Int J Environ Sci Technol 3:35–42

    CAS  Google Scholar 

  11. Liu WX, Li XD, Shen ZG, Wang DC, Wai OWH, Li YS (2003) Multivariate statistical study of heavy metal enrichment in sediments of the Pearl river estuary. Environ Pollut 121:377–388. doi:10.1016/S0269-7491(02)00234-8

    Article  CAS  Google Scholar 

  12. Matagi SV, Swai D, Mugabe R (1998) A review of heavy metals mechanism in wetlands. African J Trop Hydrobiol Fish 8:23–35

    Google Scholar 

  13. Morad S (1998) Carbonate cementation in sandstones: distribution patterns and geochemical evolution. Blackwell Science Limited, London

    Google Scholar 

  14. Muller G (1979) Schwermetalle in den sediments des Rheins-Veranderungen seitt 1971. Umschan 79:778–783

    Google Scholar 

  15. Preda M, Cox ME (2000) Sediment-water interaction, acidity and other water quality parameters in a subtropical setting, Pimpama river, Southeast Queensland. Environ Geo 39:319–329. doi:10.1007/s002540050011

    Article  CAS  Google Scholar 

  16. Radojevic M, Bashkin VN (1999) Practical environmental analysis. Royal Society of Chemistry, Cambridge

    Google Scholar 

  17. Rubio B, Nombelia MA, Vilas F (2000) Geochemistry of major and trace elements in ediments of the Ria De Vigo (NW Spain): an assessment of metal pollution. Marine Pollut Bull 40:968–980. doi:10.1016/S0025-326X(00)00039-4

    Article  CAS  Google Scholar 

  18. Soto-Jimenez MF, Paez-Osuna F (2001) Distribution and normalization of heavy metal concentrations in mangrove and lagoon sediments from Mazatlan Harbor (SE Gulf California). Estuar Coast Shelf Sci 53:259–274. doi:10.1006/ecss.2000.0814

    Article  CAS  Google Scholar 

  19. Town and Regional Planning Department (TRPD) (2003). Project Sabah, 2003. Environmental Local Planning (ELP), Kota Kinabalu, Sabah

  20. Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 72:175–192. doi:10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2

    Article  CAS  Google Scholar 

  21. Zhou H, Peng X, Pan J (2004) Distribution, source and enrichment of some chemical elements in sediments of the Pearl river estuary, China. Conti Shelf Res 24:1857–1875. doi:10.1016/j.csr.2004.06.012

    Article  Google Scholar 

Download references


We would like to thank Mr. Asram and Mr. Neldin Jeoffrey for assisting with the field sampling. The author gratefully acknowledges her Universiti Malaysia Sabah Scholarship (YTL Foundation).

Author information



Corresponding author

Correspondence to S. M. Praveena.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Praveena, S.M., Ahmed, A., Radojevic, M. et al. Multivariate and Geoaccumulation Index Evaluation in Mangrove Surface Sediment of Mengkabong Lagoon, Sabah. Bull Environ Contam Toxicol 81, 52–56 (2008).

Download citation


  • Mangrove surface sediment
  • Tide
  • Multivariate analysis
  • Geoaccumulation Index