Skip to main content

Optimization of Chelator-Assisted Phytoextraction, Using EDTA, Lead and Sedum alfredii Hance as a Model System


Pot and leaching column experiments were conducted to optimize chelator-assisted phytoextraction of lead (Pb) from contaminated soils. Optimum phytoextraction occurred at added EDTA concentration of 5 mM in single dose for 10 days in low Pb soil (treated with 400 mg kg−1 soil), while it would be better for high Pb soil (treated with 1,200 mg kg−1 soil) with five intermittent doses of 10 mM EDTA for 7 days. Combined with column experiment, it could be inferred that chelator-assisted phytoextraction is more suitable for the slightly contaminated soils.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  1. Chiu KK, Ye ZH, Wong MH (2005) Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chemosphere 60:1365–1375

    Article  CAS  Google Scholar 

  2. Cooper EM, Sims JT, Cunningham SD, Huang JW, Berti WR (1999) Chelate-assisted phytoextraction of lead from contaminated soils. J Environ Qual 28:1709–1719

    CAS  Article  Google Scholar 

  3. Diels L, Van der Lelie N, Bastiaens L (2002) New developments in treatment of heavy metal contaminated soils. Rev Environ Sci Biotechnol 1:75–82. doi:10.1023/A:1015188708612

    Article  CAS  Google Scholar 

  4. Grcman H, Velikonja-Boltal S, Vodnik D, Kos B, Letan D (2001) EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant Soil 235:105–114. doi:10.1023/A:1011857303823

    Article  CAS  Google Scholar 

  5. He B, Yang XE, Ni WZ, Wei YZ (2002) Sedum alfredii-a new Lead-accumulating ecotype. Acta Bot Sin 44:1356–1370

    Google Scholar 

  6. Liu D, Li TQ, Yang XE, Islam E, Jin XF, Mahmood Q (2007) Influence of EDTA on lead transportation and accumulation by Sedum alfredii Hance. Z Naturforsch [c] 62:717–724

    CAS  Google Scholar 

  7. Meers E, Ruttens A, Hopgood MJ, Samson D, Tack FMG (2005) Comparison of EDTA and EDDS as potential soil amendments for enhanced phytoextraction of heavy metals. Chemosphere 58:1011–1022

    Article  CAS  Google Scholar 

  8. Miller WP, Martens DC, Zelazny LM (1986) Effect of sequence in extraction of trace metals from soils. Soil Sci Soc Am J 50:598–601

    Google Scholar 

  9. Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees-a review. Environ Int 29:529–540. doi:10.1016/S0160-4120(02)00152-6

    Article  CAS  Google Scholar 

  10. Romkens P, Bouwman L, Japenga J, Draaisma C (2002) Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environ Pollut 116:109–121. doi:10.1016/S0269-7491(01)00150-6

    Article  CAS  Google Scholar 

  11. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Ann Rev Plant Physiol Plant Mol Bio 49:643–668. doi:10.1146/annurev.arplant.49.1.643

    Article  CAS  Google Scholar 

  12. Tandy S, Schulin R, Nowack B (2006) The influence of EDDS on the uptake of heavy metals in hydroponically grown sunflowers. Chemosphere 62:1454–1463

    Article  CAS  Google Scholar 

  13. Tiedje JM (1975) Microbial degradation of ethylenediaminetetraacetate in soils and sediments. J Appl Microbiol 30:327–329

    CAS  Google Scholar 

  14. Turgut C, Katie-Pepe M, Cutright TJ (2005) The effect of EDTA on Helianthus annuus uptake, selectivity, and translocation of heavy metals when grown in Ohio, New Mexico and Colombia soils. Chemosphere 58:1087–1095

    Article  CAS  Google Scholar 

  15. Wu LH, Luo YM, Xing XR, Christie P (2004) EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agr EcoEnviron 102:307–318

    CAS  Google Scholar 

  16. Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 55:181–189. doi:10.1023/B:PLSO.0000020956.24027.f2

    Article  Google Scholar 

  17. Yang XE, Li TQ, Yang JC, He ZL, Lu LL, Meng FH (2006) Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance. Planta 224:185–195. doi:10.1007/s00425-005-0194-8

    Article  CAS  Google Scholar 

Download references


The present research was financially supported by a grant from the National Natural Science Foundation of China (No. 20477039), Scientific Research Foundation of Zhejiang Forestry University (No. 2007FR059) and Key Project from Zhejiang Science and Technology Department (No. 2005C12034).

Author information



Corresponding author

Correspondence to Dan Liu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, D., Islam, E., Ma, J. et al. Optimization of Chelator-Assisted Phytoextraction, Using EDTA, Lead and Sedum alfredii Hance as a Model System. Bull Environ Contam Toxicol 81, 30–35 (2008).

Download citation


  • EDTA
  • Pb
  • Phytoextraction
  • Sedum alfredii Hance