Skip to main content

Chromium Tolerance and Reduction Potential of a Bacillus sp.ev3 Isolated from Metal Contaminated Wastewater

Abstract

This study was aimed at assessing the ability of Bacillus sp.ev3 to reduce hexavalent chromium into its trivalent form. Bacillus sp.ev3 could tolerate Cr6+ (4800 μg/mL), Pb2+ (800 μg/mL), Cu2+ (200 μg/mL), Cd2+ (50 μg/mL), Zn2+ (400 μg/mL), Ni2+ (4000 μg/mL) and Hg2+ (50 μg/mL). Bacillus sp.ev3 showed optimum growth at 37°C and pH at 7. Bacillus sp.ev3 could reduce 91% of chromium from the medium after 96 h and was also capable to reduce 84% chromium from the industrial effluents after 144 h. Cell free extracts of Bacillus sp.ev3 grown in the presence of Cr showed reduction of 70%, 45.6% and 27.4% at concentrations of 10 μg Cr6+/mL, 50 μg Cr6+/mL and 100 μg Cr6+/mL, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ackerley DF, Gonzalez CF, Park CH, Blake R, Keyhan A, Matin A (2004) Chromate-reducing properties of soluble flavoproteins from Pseudomonas putida and Escherichia coli. Appl Environ Microbiol 70:873–888. doi:10.1128/AEM.70.2.873-882.2004

    Article  CAS  Google Scholar 

  2. Ahluwalia SS, Goyal D (2007) Microbial and plant derived biomass for removal of heavy metals from wastewater. Bioresour Technol 98:2243–2257. doi:10.1016/j.biortech.2005.12.006

    Article  CAS  Google Scholar 

  3. APHA (1989) Standard methods for the examination of water and wastewater. 18th edn. APHA, Washington, DC

    Google Scholar 

  4. Camargo FAO, Bento FM, Okeke BC, Frankenberger WT (2003) Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. J Environ Qual 32:1228–1233

    CAS  Article  Google Scholar 

  5. Campos J, Martinez-Pacheco M, Cervantes C (1995) Hexavalent chromium reduction by a chromate-resistant Bacillus sp. strain. Int J Gen Mol Microbiol 68:203–208

    CAS  Google Scholar 

  6. Campos VL, Moraga R, Yanez J, Zaror CA, Mondaca MA (2005) Chromate reduction by Serratia marcescens isolated from tannery effluent. Bull Environ Contam Toxicol 75:400–406. doi:10.1007/s00128-005-0767-z

    Article  CAS  Google Scholar 

  7. Chardin B, Giudici-Orticoni MT, De Luca G, Guigliarelli B, Bruschi M (2003) Hydrogenases in sulfate-reducing bacteria function as chromium reductase. Appl Microbiol Biotechnol 63:315–321. doi:10.1007/s00253-003-1390-8

    Article  CAS  Google Scholar 

  8. Elangovan R, Abhipsa S, Rohit B, Ligy P, Chandraraj K (2006) Reduction of Cr (VI) by a Bacillus sp. Biotechnol Lett 28:247–252. doi:10.1007/s10529-005-5526-z

    Article  CAS  Google Scholar 

  9. Francisco R, Alpoim MC, Morais PV (2002) Diversity of chromium-resistant and reducing bacteria in a chromium-contaminated activated sludge. J Appl Microbiol 92:837–843. doi:10.1046/j.1365-2672.2002.01591.x

    Article  CAS  Google Scholar 

  10. Fulladosa E, Desjardin V, Murat JC, Gourdon R, Villaescusa I (2006) Cr (VI) reduction into Cr (III) as a mechanism to explain the low sensitivity of Vibrio fischeri bioassay to detect chromium pollution. Chemosphere 65:644–650. doi:10.1016/j.chemosphere.2006.01.069

    Article  CAS  Google Scholar 

  11. Ganguli A, Tripathi AK (2002) Bioremediation of toxic chromium from electroplating effluents by chromate-reducing Pseudomonas aeruginosa A2Chr in two bioreactors. Appl Microbiol Biotechnol 58:416–420. doi:10.1007/s002530100822

    Article  CAS  Google Scholar 

  12. Goulhen F, Gloter A, Guyot F, Bruschi A (2006) Cr (VI) detoxification by Desulfovibrio vulgaris strain Hildenborough: microbe-metal interactions studies. Appl Microbiol Biotechnol 71:892–897. doi:10.1007/s00253-005-0211-7

    Article  CAS  Google Scholar 

  13. Holan ZR, Volesky B (1995) Accumulation of Cd, lead and nickel by fungal and wood biosorbents. Appl Biochem Biotechnol 53:133–146. doi:10.1007/BF02788603

    Article  CAS  Google Scholar 

  14. Kotas J, Stasicka Z (2000) Chromium occurrence in the environment and methods of its speciation. Environ Pollut 107:263–283. doi:10.1016/S0269-7491(99)00168-2

    Article  CAS  Google Scholar 

  15. Megharaj M, Avudainayagam S, Naidu R (2003) Toxicity of hexavalent chromium and its reduction by bacteria isolated from soil contaminated with tannery waste. Curr Microbiol 47:51–54. doi:10.1007/s00284-002-3889-0

    Article  CAS  Google Scholar 

  16. Nourbakhsh M, Sag Y, Ozer D, Aksu Z, Kutsal T, Calgar A (1994) A comparative study of various biosorbents for removal of chromium (ε) ions from industrial wastewater. Process Biochem 29:1–5. doi:10.1016/0032-9592(94)80052-9

    Article  CAS  Google Scholar 

  17. Pattanapipitpaisal P, Mabbett AN, Finlay JA, Beswick AJ, Paterson-Beedle M, Essa A, Wright J, Tolley MR, Badar U, Ahmed N, Hobman JL, Brown NL, Macaskie LE (2002) Reduction of Cr(VI) and bioaccumulation of chromium by Gram-positive and Gram-negative microorganisms not previously exposed to Cr-stress. Environ Technol 23:731–745

    Article  CAS  Google Scholar 

  18. Rajkumar M, Nagendran R, Lee KJ, Lee WH (2005) Characterization of a novel Cr6+ reducing Pseudomonas sp. with plant growth-promoting potential. Curr Microbiol 50:266–271. doi:10.1007/s00284-005-4470-4

    Article  CAS  Google Scholar 

  19. Rehman A, Shakoori FR, Shakoori AR (2007) Heavy metal resistant Distigma proteus (Euglenophyta) isolated from industrial effluents and its possible role in bioremediation of contaminated wastewaters. World J Microbiol Biotechnol 23:753–758. doi:10.1007/s11274-006-9291-5

    Article  CAS  Google Scholar 

  20. Romanenko VI, Koren’Ken VN (1977) A pure culture of bacteria utilizing chromates and bichromates as hydrogen acceptors in growth under anaerobic conditions. Mikrobiologiya 46:414–417

    CAS  Google Scholar 

  21. Sag Y, Kutsal T (1989) The use of zoogloea in waste water treatment containing Cr (VI) and Cd (II) ions. Biotechnol Lett 11:145–148. doi:10.1007/BF01192192

    Article  CAS  Google Scholar 

  22. Stasinakis AS, Thomaidis NS, Mamais D, Papanikolaou EC, Tsakon A, Lekkas TD (2003) Effect of chromium (VI) addition on the activated sludge process. Water Res 37:2140–2148. doi:10.1016/S0043-1354(02)00623-1

    Article  CAS  Google Scholar 

  23. Sultan S, Hasnain S (2007) Reduction of toxic hexavalent chromium by Ochrobactrum intermedium strain SDCr-5 stimulated by heavy metals. Bioresour Technol 98:340–344. doi:10.1016/j.biortech.2005.12.025

    Article  CAS  Google Scholar 

  24. Thacker U, Madamwar D (2005) Reduction of toxic chromium and partial localization of chromium reductase activity in bacterial isolate DM1. World J Microbiol Biotechnol 21:891–899. doi:10.1007/s11274-004-6557-7

    Article  CAS  Google Scholar 

  25. Viamajala S, Smith WA, Sani RK, Apel WA, Petersen JN, Neal AL, Roberto FF, Newby DT, Peyton BM (2007) Isolation and characterization of Cr (VI) reducing Cellulomonas spp. from subsurface soils: implications for long-term chromate reduction. Bioresour Technol 98:612–622. doi:10.1016/j.biortech.2006.02.023

    Article  CAS  Google Scholar 

  26. Ziagova M, Dimitriadis G, Aslanidou D, Papaioannou X, Litopoulou-Tzannetaki E, Liakopoulou-Kyriakides M (2007) Comparative study of Cd(II) and Cr(VI) biosorption on Staphylococcus xylosus and Pseudomonas sp. in single and binary mixtures. Bioresour Technol 98:2859–2865. doi:10.1016/j.biortech.2006.09.043

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Rehman.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Rehman, A., Zahoor, A., Muneer, B. et al. Chromium Tolerance and Reduction Potential of a Bacillus sp.ev3 Isolated from Metal Contaminated Wastewater. Bull Environ Contam Toxicol 81, 25–29 (2008). https://doi.org/10.1007/s00128-008-9442-5

Download citation

Keywords

  • Cr6 + reducing bacterium
  • Bioremediation
  • Cr6+ reduction
  • Bacillus sp.ev3