Skip to main content

Evaluation of Plant–Microorganism Synergy for the Remediation of Diesel Fuel Contaminated Soil

Abstract

The remediation of diesel fuel contaminated soil over a 2-year period by the plant–microorganism synergy was evaluated. Results indicated that the growth of Astragalus adsurgens was affected significantly, when the diesel fuel concentration was higher than 10 g kg−1 dry soil. After a 2-year period, the removal of diesel fuel was >67%, and about 58–70% removal of aromatic hydrocarbons was obtained in these treatments. The removal of diesel fuel and its components was 13–30% higher than that of plant alone. These results show that an appropriate plant–microorganism synergy may serve as a low-cost, effective remedial technology for diesel-contaminated soil.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alexander M (1999) Biodegradation and bioremediation. Academic Press Inc., San Diego, USA

    Google Scholar 

  2. Alexander M (2000) Aging, bioavailability, and overestimation of risk from environmental pollutants. Environ Sci Technol 34: 4259–4265. doi:10.1021/es001069+

    Article  CAS  Google Scholar 

  3. Anderson TA, Guthrie EA, Walton BT (1993) Bioremediation in the rhizosphere. Environ Sci Technol 27:2630–2637. doi:10.1021/es00049a001

    Article  CAS  Google Scholar 

  4. Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biot 80:723–736. doi:10.1002/jctb.1276

    Article  CAS  Google Scholar 

  5. Banks MK, Schwab P, Liu B, Kulakow P, Smith JS, Kim R (2003) The effect of plants on the degradation and toxicity of petroleum contaminants in soil: a field assessment. Adv Biochem Eng Biotechnol 78:75–96

    CAS  Google Scholar 

  6. Betancur-Galvis LA, Alvarez-Bernal D, Ramos-Valdivia AC, Dendooven L (2006) Bioremediation of polycyclic aromatic hydrocarbon-contaminated saline–alkaline soils of the former Lake Texcoco. Chemosphere 62:1749–1760. doi:10.1016/j.chemosphere.2005.07.026

    Article  CAS  Google Scholar 

  7. Denys S, Rollin C, Guillot F, Baroudi H (2006) In-situ phytoremediation of PAHs contaminated soils following a bioremediation treatment. Water Air Soil Pollut Focus 6, 299–315

    Article  CAS  Google Scholar 

  8. Dibble JT, Bartha R (1979) Effect of environmental parameters on the biodegradation of oil sludge. Appl Environ Microbiol 37:729–739

    CAS  Google Scholar 

  9. Hatfield JL, Stewart BA (1994) Soil biology: effects on soil quality. Lewis Publishers, Cherry Hill

    Google Scholar 

  10. Huang XD, El-Alawi Y, Gurska J, Glick BR, Greenberg BM (2005) A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem J 81:139–147. doi:10.1016/j.microc.2005.01.009

    Article  CAS  Google Scholar 

  11. Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130:465–476. doi:10.1016/j.envpol.2003.09.031

    Article  CAS  Google Scholar 

  12. Jacks G, Forsberg J, Mahgoub F, Palmqvist K (2000) Sustainability of local water supply and sewage system – a case study in a vulnerable environment. Ecol Eng 15:147–153. doi:10.1016/S0925-8574(99)00038-5

    Article  Google Scholar 

  13. Joner EJ, Corgié S, Amellal N, Leyval C (2002) Nutritional constraints to PAH degradation in a rhizosphere model. Soil Biol Biochem 34:859–864. doi:10.1016/S0038-0717(02)00018-4

    Article  CAS  Google Scholar 

  14. Kaimi E, Mukaidani T, Miyoshi S, Tamaki M (2006) Ryegrass enhancement of biodegradation in diesel-contaminated soil. Environ Exp Bot 55:110–119. doi:10.1016/j.envexpbot.2004.10.005

    Article  CAS  Google Scholar 

  15. Lapinskien A, Martinkus P, Rebvilija Z (2006) Eco-toxicological studies of diesel and biodiesel fuels in aerated soil. Environ Pollut 142:432–437. doi:10.1016/j.envpol.2005.10.023

    Article  CAS  Google Scholar 

  16. Lin X, Li P, Zhou QX, Xu HX, Zhang HR (2004) Microbial changes in rhizospheric soils contaminated with petroleum hydrocarbons after bioremediation. J Environ Sci 16:987–990

    CAS  Google Scholar 

  17. Liu WH, Zhao JZ, Ouyang ZY (2005) Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environ Int 31:805–812. doi:10.1016/j.envint.2005.05.042

    Article  CAS  Google Scholar 

  18. Lundstedt S, Haglund P, Oberg L (2003) Degradation and formation of polycyclic aromatic compounds during bioslurry treatment of an acid aged gasworks soil. Environ Toxicol Chem 22:1413–1420. doi:10.1897/1551-5028(2003)22<1413:DAFOPA>2.0.CO;2

    Google Scholar 

  19. Mathew M, Tan LR, Su Q, Yang X, Baxter M, Senior E (2006) Bioremediation of 6% [w/w] diesel-contaminated mainland soil in Singapore: comparison of different biostimulation and bioaugmentation treatments. Eng Life Sci 6:63–67. doi:10.1002/elsc.200620119

    Article  CAS  Google Scholar 

  20. Mendon CE, Picado A (2002) Ecotoxicological monitoring of remediation in a coke oven soil. Environ Toxicol 17:74–79. doi:10.1002/tox.10034

    Article  CAS  Google Scholar 

  21. Mishra S, Jyot J, Kuhad RC et al (2001) Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil. Appl Environ Microbiol 67(4):1675–1681. doi:10.1128/AEM.67.4.1675-1681.2001

    Article  CAS  Google Scholar 

  22. Oztas T, Fayetorbay F (2003) Effect of freezing and thawing processes on soil aggregate stability. Catena 52:1–8. doi:10.1016/S0341-8162(02)00177-7

    Article  CAS  Google Scholar 

  23. Parrish ZD, Banks MK, Schwab AP (2005) Effect of root death and decay on dissipation of polycyclic aromatic hydrocarbons in the rhizosphere of yellow sweet clover and tall fescue. J Environ Qual 34:207–216

    CAS  Article  Google Scholar 

  24. Radwan S, Sorkhoh N, El-Nemr I (1995) Oil biodegradation around roots. Nature 376:302. doi:10.1038/376302a0

    Article  CAS  Google Scholar 

  25. Singer AC, Smith D, Jury WA, Khoiviet H, Crowley DE (2003) Impact of the plant rhizosphere and augmentation on remediation of polychlorinated biphenyl contaminated soil. Environ Toxicol Chem 22:1998–2004. doi:10.1897/02-471

    Article  CAS  Google Scholar 

  26. Tesar M, Reichenauer TG, Sessitsch A (2002) Bacterial rhizosphere populations of black poplar and herbal plants to be used for phytoremediation of diesel fuel. Soil Biol Biochem 34:1883–1892. doi:10.1016/S0038-0717(02)00202-X

    Article  CAS  Google Scholar 

  27. Trindade PVO, Sobral LG, Rizzo ACL, Leite SGF, Soriano AU (2005) Bioremediation of a weathered and a recently oil-contaminated soils from Brazil: a comparison study. Chemosphere 58:515–522. doi:10.1016/j.chemosphere.2004.09.021

    Article  CAS  Google Scholar 

  28. Vinas M, Sabaté J, Espuny MJ, Solanas AM (2005) Bacterial community dynamics and polycyclic aromatic hydrocarbon degradation during bioremediation of heavily creosote-contaminated soil. Appl Environ Microbiol 71:7008–7018. doi:10.1128/AEM.71.11.7008-7018.2005

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by funds provided by National Basic Research Program of China (No. 2004CB418506) and Postdoctoral funds of Liaoning province.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Li.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lin, X., Li, X., Li, P. et al. Evaluation of Plant–Microorganism Synergy for the Remediation of Diesel Fuel Contaminated Soil. Bull Environ Contam Toxicol 81, 19–24 (2008). https://doi.org/10.1007/s00128-008-9438-1

Download citation

Keywords

  • Diesel fuel
  • TPHs
  • AHs
  • Soil
  • Removal