Skip to main content

Characterization of Pentachlorophenol Degrading Bacterial Consortium from Chemostat

Abstract

A microbial consortium was developed by continuous enrichment of bacterial population isolated from sediment core of pulp and paper mill effluent in mineral salts medium (MSM) supplemented with pentachlorophenol (PCP) as sole source of carbon and energy in the chemostat. The enriched consortium contained three bacterial strains identified as Escherichia coli (PCP1), Pseudomonas aeruginosa (PCP2) and Acinetobacter sp. (PCP3) by morphological and biochemical tests, further confirmation was done using 16S rDNA sequence analysis. The potency of bacterial isolates in degradation of PCP was monitored in terms of growth and utilization of PCP as substrate with spectrophotometer and gas chromatograph-mass spectrometer (GC-MS) analysis. The strains were tested for their utilization of various organic compounds. The strain PCP3, showed higher potency to utilize PCP as sole source of carbon and energy than PCP1 and PCP2. The bacterial strain were able to utilize PCP through an oxidative and reductive route as indicated with the formation of tetrachloro-p-hydroquinone (TeCH), 2-chloro-1,4-benzenediol and 2,3,4,6-tetrachlorophenol, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Bock C, Kroppenstedt RM, Schmidt U, Diekmann H (1996) Degradation of prochloraz and 2,4,6-trichlorophenol by environmental bacterial strains. Appl Microbiol Biotechnol 45:257–262. doi:10.1007/s002530050680

    Article  CAS  Google Scholar 

  2. Chanama S, Crawford RL (1997) Mutational analysis of pcpA and its role in pentachlorophenol degradation by Sphingomonas (Flavobacterium) chlorophenolica ATCC 39723. Appl Environ Microbiol 63:4833–4838

    CAS  Google Scholar 

  3. Copley SD (2000) Evolution of metabolic pathway for degradation of a toxic xenobiotic: the patchwork approach. Trends Biochem Sci 25:261–265. doi:10.1016/S0968-0004(00)01562-0

    Article  CAS  Google Scholar 

  4. Crawford RL, Mohn WW (1985) Microbial removal of pentachlorophenol from soil using a Flavobacterium. Enzyme Microb Technol 7:617–620. doi:10.1016/0141-0229(85)90031-6

    Article  CAS  Google Scholar 

  5. Dams RI, Paton GI, Killham K (2007) Rhizomediation of pentachlorophenol by Sphingobium chlorophenolicum ATCC 39723. Chemosphere 68:864–870. doi:10.1016/j.chemosphere.2007.02.014

    Article  CAS  Google Scholar 

  6. Edgehill RU (1994) Pentachlorophenol removal from slightly acidic mineral salts, commercial sand, and clay soil by recovered Arthrobacter strain ATCC 33790. Appl Microbiol Biotechnol 41:142–148. doi:10.1007/BF00166097

    Article  CAS  Google Scholar 

  7. Edgehill RU, Finn RK (1983) Microbial treatment of soil to remove pentachlorophenol. Appl Environ Microbiol 45:1122–1125

    CAS  Google Scholar 

  8. Fetzner S, Lingens F (1994) Bacterial dehalogenase: biochemistry, genetics and biotechnological applications. Microbiol Rev 58:641–685

    CAS  Google Scholar 

  9. Hu Z, Wu YR, Lin BK, Maskaoui K, Zhuang DH, Zheng TL (2006) Isolation and characterization of two phenol degrading yeast strains from marine sediment. Bull Environ Contam Toxicol 76:899–906. doi:10.1007/s00128-006-1003-1

    Article  CAS  Google Scholar 

  10. Kaoa CM, Chaib CT, Liub JK, Yehc TY Chena KF, Chend SC (2004) Evaluation of natural and enhanced PCP biodegradation at a former pesticide manufacturing plant. Water Res 38:663–672. doi:10.1016/j.watres.2003.10.030

    Article  Google Scholar 

  11. Leung KM, Campbell S, Gan Y, White DC, Lee H, Trevors T (1999) The role of the Sphingomonas species UG30 pentachlorophenol-4-monooxygenase in p-nitrophenol degradation. FEMS Microbiol Lett 173:247–253. doi:10.1111/j.1574-6968.1999.tb13509.x

    Article  CAS  Google Scholar 

  12. McAllister KA, Lee H, Trevors JT (1996) Microbial degradation of pentachlorophenol. Biodegradation 7:1–40. doi:10.1007/BF00056556

    Article  CAS  Google Scholar 

  13. Miethling R, Karlson U (1996) Accelerated mineralization of pentachlorophenol in soil upon inoculation with Mycobacterium chlorophenolicum PCP1 and Sphingomonas chlorophenolica RA2. Appl Environ Microbiol 62:4361–4366

    CAS  Google Scholar 

  14. Okeke BC, Paterson A, Smith JE, Watson-Craik IA (1997) Comparative biotransformation of pentachlorophenol in soils by solid substrate cultures of Lentinula edodes. Appl Microbiol Biotechnol 48:563–569. doi:10.1007/s002530051097

    Article  CAS  Google Scholar 

  15. Orser CS, Lange CC, Xun L, Zahrt TC, Schneider BJ (1993) Cloning, sequence analysis, and expression of the Flavobacterium pentachlorophenol-4-monooxygenase gene in Escherichia coli. J Bacteriol 175:411–416

    CAS  Google Scholar 

  16. Palleroni NJ (1984) Pseudomonas. In: Krieg NR, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams Wilkins, Baltimore, pp 141–198

    Google Scholar 

  17. Reineke W, Knackmuss HJ (1988) Microbial degradation of haloaromatics. Ann Rev Microbiol 42:263–287. doi:10.1146/annurev.mi.42.100188.001403

    Article  CAS  Google Scholar 

  18. Rensnick SM, Chapman PJ (1994) Physiological properties and substrate specificity of a pentachlorophenol-degrading Pseudomonas species. Biodegradation 5:47–54

    Google Scholar 

  19. Saber DL, Crawford RL (1985) Isolation and characterization of Flavobacterium strain that degrade pentachlorophenol. Appl Environ Microbiol 50:1512–1518

    CAS  Google Scholar 

  20. Shen DS, Liu XW, Feng HJ (2005) Effect of easily degradable substrate on anaerobic degradation of pentachlorophenol in an upflow anaerobic sludge blanket (UASB) reactor. J Hazard Mater B119:239–243. doi:10.1016/j.jhazmat.2004.12.024

    Article  Google Scholar 

  21. Shiu WY, Ma KC, Varhanickova D, MacKay D (1994) Chlorophenols and alkylphenols: a review and correlation of environmentally relevant properties and fate in an evaluative environment. Chemosphere 29(6):1155–1224. doi:10.1016/0045-6535(94)90252-6

    Article  CAS  Google Scholar 

  22. Shukla S, Sharma R, Thakur IS (2001) Enrichment and characterization of pentachlorophenol degrading microbial community from the treatment of tannery effluent. Pollut Res 20:353–363

    CAS  Google Scholar 

  23. Tartakovsky B, Levesque MJ, Dumortier R, Beaudet R, Guiot SR (1999) Biodegradation of pentachlorophenol in a continuous anaerobic reactor augmented with Desulfitobacterium frappieri PCP-1. Appl Environ Microbiol 65:4357–4362

    CAS  Google Scholar 

  24. Tartakovsky B, Manuel MF, Beaumier D, Greer CW, Guiot SR (2001) Enhanced selection of an anaerobic pentachlorophenol-degrading consortium. Biotechnol Bioeng 73:476–483. doi:10.1002/bit.1082

    Article  CAS  Google Scholar 

  25. Thakur IS, Verma P, Upadhyaya KC (2001) Involvement of plasmid in degradation of pentachlorophenol by Pseudomonas sp. from a chemostat. Biochem Biophys Res Comm 286:109–113. doi:10.1006/bbrc.2001.5340

    Article  CAS  Google Scholar 

  26. Thakur IS, Verma PK, Upadhaya KC (2002) Molecular cloning and characterization of pentachlorophenol-degrading monooxygenase genes of Pseudomonas sp. from the chemostat. Biochem Biophys Res Commun 290:770–774. doi:10.1006/bbrc.2001.6239

    Article  CAS  Google Scholar 

  27. Vallecillo A, Garcia-Encina PA, Pena M (1999) Anaerobic biodegradability and toxicity of chlorophenols. Water Sci Technol 40:161–168. doi:10.1016/S0273-1223(99)00622-8

    Article  CAS  Google Scholar 

  28. Wang YT, Muthukrishnan S, Wang Z (1998) Reductive dechlorination of chlorophenols in methanogenic cultures. J Environ Eng 124(3):231–238. doi:10.1061/(ASCE)0733-9372(1998)124:3(231)

    Article  CAS  Google Scholar 

  29. Xun L, Orser CS (1991) Purification and properties of pentachlorophenol hydroxylase, a flavoprotein from Flavobacterium sp. strain ATCC 39723. J Bacteriol 173:4447–4453

    CAS  Google Scholar 

  30. Yang CF, Lee CM, Wang CC (2006) Isolation and physiological characterization of the pentachlorophenol degrading bacterium Sphingomonas chlorophenolica. Chemosphere 62:709–714. doi:10.1016/j.chemosphere.2005.05.012

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thank Department of Biotechnology, Ministry of Science and Technology, Government of India, New Delhi, for providing financial assistance to carry out this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ashwani Sharma.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sharma, A., Thakur, I.S. Characterization of Pentachlorophenol Degrading Bacterial Consortium from Chemostat. Bull Environ Contam Toxicol 81, 12–18 (2008). https://doi.org/10.1007/s00128-008-9437-2

Download citation

Keywords

  • Biodegradation
  • Chemostat
  • Consortia
  • GC-MS
  • Pentachlorophenol