Skip to main content

Prediction of Biodegradation Rate Constants of Hydroxylated Polychlorinated Biphenyls by Fungal Laccases from Trametes versicolor and Pleurotus ostreatus

Abstract

Quantitative structure-activity relationship (QSAR) models for fungal laccase-catalyzed degradation of different hydroxylated polychlorinated biphenyls (OH-PCBs) were developed using some fundamental quantum chemical descriptors. The cross-validated Q 2 cum values for the two optimal QSAR models are as high as 0.958 and 0.961 for laccases from Trametes versicolor and Pleurotus ostreatus, respectively, indicating good predictive abilities for laccase-catalyzed degradation of OH-PCBs. Results from this study show that increasing heat of formation (ΔH f) and frontier molecular orbital energy (i.e. E LUMO + E HOMO) values or decreasing frontier molecular orbital energy (i.e. E HOMO−1) and core-core repulsion energy (CCR) values leads to the increase of OH-PCB degradation rates by laccases.

This is a preview of subscription content, access via your institution.

References

  1. Bollag JM, Chu H-L, Rao MA, Gianfreda L (2003) Enzymatic oxidative transformation of chlorophenol mixtures. J Environ Qual 32:63–69

    CAS  Article  Google Scholar 

  2. Bollag JM, Shuttleworth KL, Anderson DH (1988) Laccase-mediated detoxification of phenolic compounds. Appl Environ Microbiol 54:3086–3091

    CAS  Google Scholar 

  3. Cassidy D, Hampton D, Kohler S (2002) Combined chemical (ozone) and biological treatment of polychlorinated biphenyls (PCBs) adsorbed to sediments. J Chem Technol Biotechnol 77:663–670

    Article  CAS  Google Scholar 

  4. Chen JW, Peijnenburg WJGM, Quan X, Yang FL (2000) Quantitative structure-property relationships for direct photolysis quantum yields of selected polycyclic aromatic hydrocarbons. Sci Total Environ 246:11–20

    Article  CAS  Google Scholar 

  5. Dodor DE, Hwang HM, Ekunwe SIN (2004) Oxidation of anthracene and benzo[a]pyrene by immobilized laccase from Trametes versicolor. Enzyme Microbiol Technol 35:210–217

    Article  CAS  Google Scholar 

  6. Durán N, Rosa MA, D’Annibale A, Gianfreda L (2002) Applications of laccases and tyrosinases (phenoloxidases) immobilized on different supports: a review. Enzyme Microbiol Technol 31:907–931

    Article  Google Scholar 

  7. Faucon JC, Bureau R, Faisant J, Briens F, Rault S (1999) Predicting of the fish acute toxicity from heterogeneous data coming from notification files. Chemosphere 38:3261–3276

    Article  CAS  Google Scholar 

  8. Hovander L, Linderholm L, Athanasiadou M, Athanassiadis I, Bignert A, Fängström B, Kocan A, Petrik J, Trnovec T, Bergman Å (2006) Levels of PCBs and their metabolites in the serum of residents of a highly contaminated area in eastern slovakia. Environ Sci Technol 40:3696–3703

    Article  CAS  Google Scholar 

  9. Keum YS, Li QX (2004) Fungal laccase-catalyzed degradation of hydroxyl polychlorinated biphenyls. Chemosphere 56:23–30

    Article  CAS  Google Scholar 

  10. Kimura-Kuroda J, Nagata I, Kuroda Y (2007) Disrupting effects of hydroxy-polychlorinated biphenyl (PCB) congeners on neuronal development of cerebellar Purkinje cells: a possible causal factor for developmental brain disorders? Chemosphere 67:S412–S420

    Article  CAS  Google Scholar 

  11. Kitamura S, Jinno N, Suzuki T, Sugihara K, Ohta S, Kuroki H, Fujimoto N (2005) Thyroid hormone-like and estrogenic activity of hydroxylated PCBs in cell culture. Toxicology 208:377–387

    Article  CAS  Google Scholar 

  12. Niu JF, Long XX, Shi SQ (2007) Quantitative structure-activity relationships for prediction of the toxicity of hydroxylated and quinoid PCB metabolites. J Mol Model 13:163–169

    Article  CAS  Google Scholar 

  13. Niu JF, Shen ZY, Yang ZF, Long XX, Yu G (2006) Quantitative structure-property relationships on photodegradation of polybrominated diphenyl ethers. Chemosphere 64:658–665

    Article  CAS  Google Scholar 

  14. Pearson PG (1986) Absolute electronegativity and hardness correlated with molecular orbital theory. Proc Natl Acad Sci 83:8440–8441

    Article  CAS  Google Scholar 

  15. Pedroza AM, Mosqueda R, Alonso-Vante N, Rodriguez-Vazquez R (2007) Sequential treatment via Trametes versicolor and UV/TiO2/RuxSey to reduce contaminants in waste water resulting from the bleaching process during paper production. Chemosphere 67:793–801

    Article  CAS  Google Scholar 

  16. Pozdnyakova NN, Rodakiewicz-Nowak J, Turkovskaya OV, Haber J (2006) Oxidative degradation of polyaromatic hydrocarbons catalyzed by blue laccase from Pleurotus ostreatus D1 in the presence of synthetic mediators. Enzyme Microbiol Technol 39:1242–1249

    Article  CAS  Google Scholar 

  17. Schultz A, Jonas U, Hammer E, Schauer F (2001) Dehalogenation of chlorinated hydroxybiphenyls by fungal laccase. Appl Environ Microbiol 67:4377–4381

    Article  CAS  Google Scholar 

  18. Shumakovich GP, Shleev SV, Morozova OV, Khohlov PS, Gazaryan IG, Yaropolov AI (2006) Electrochemistry and kinetics of fungal laccase mediators. Bioelectrochemistry 69:16–24

    Article  CAS  Google Scholar 

  19. Soffers AEMF, Boersma MG, Vaes WHJ, Vervoort J, Tyrakowska B, Hermens JLM, Rietjens IMCM (2001) Computer-modeling-based QSARs for analyzing experimental data on biotransformation and toxicity. Toxicol Vitro 15:539–551

    Article  CAS  Google Scholar 

  20. Veith GD, Mekenyan OG, Ankley GT, Call DJ (1995) A QSAR analysis of substitutent effects on the photoinduced acute toxicity of PAHs. Chemosphere 30:2129–2142

    Article  CAS  Google Scholar 

  21. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemomet Intell Lab Syst 58:109–130

    Article  CAS  Google Scholar 

  22. Zille A, Munteanu FD, Gubitz G.M, Artur CP (2005) Laccase kinetics of degradation and coupling reactions. J Mol Catal B: Enzym 33:23–28

    Google Scholar 

Download references

Acknowledgment

The research was supported by the National High Technology Research and Development Program of China (863 Project, 2006AA06Z323).

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. F. Niu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Jiang, G.X., Niu, J.F., Zhang, S.P. et al. Prediction of Biodegradation Rate Constants of Hydroxylated Polychlorinated Biphenyls by Fungal Laccases from Trametes versicolor and Pleurotus ostreatus . Bull Environ Contam Toxicol 81, 1–6 (2008). https://doi.org/10.1007/s00128-008-9433-6

Download citation

Keywords

  • Hydroxylated PCBs
  • QSARs
  • Laccases
  • Biodegradation