Skip to main content

Bioavailability and Toxicity of Heavy Metals in a Heavily Polluted River, in PRD, China


The research is designed to explore the SEM-AVS concept as a tool to assess bioavailability and toxicity of heavy metals in heavily polluted river sediments. The value of AVS and SEM is in a high level and only a few benthic invertebrate are found. Abundance of benthic invertebrate has significant correlation with SEM/AVS (r = −0.913, p < 0.01) and SEM-AVS (r = −0.725, p < 0.05). The analytical results of MDS (Non-matric Multi-dimentional Scaling) analysis indicate the benthic community structures of seven among nine stations where the ∑SEM5-AVS < 0 are similar. The two facts indicate the SEM-AVS concept also is useful to heavily polluted river sediments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. Allen HE, Fu G, Deng B (1993) Analysis of AVS and SEM for the estimation of potential toxicity in aquatic sediments. Environ Toxicol Chem 12:1–13

    Article  Google Scholar 

  2. Ankley GT, Mattson VR, Leonard EN, West CW (1993) Predicting the acute toxicity of copper in freshwater sediments: evaluation of the role of acid-volatile sulfide. Environ Toxicol Chem 12:315–323

    Article  CAS  Google Scholar 

  3. Berry WJ, Hansen DJ, Mahony JD, Robson DL, Di Toro DM, Shipley BP, Rogers B, Corbin JM, Boothman WS (1996) Predicting the toxicity of metal-spiked laboratory sediments using acid-volatile sulfide and interstitial water normalizations. Environ Toxicol Chem 15:2067–2079

    Article  CAS  Google Scholar 

  4. Casas A, Crecelius E (1994) Relationship between acid volatile sulfide and the toxicity of zinc, lead and copper in marine sediments. Environ Toxicol Chem 13:529–536

    Article  CAS  Google Scholar 

  5. Cooper DC, Morse JW (1998) Biogeochemical controls on trace metal cycling in anoxic marine sediments. Environ Sci Technol 32:327–330

    Article  CAS  Google Scholar 

  6. DiToro DM, Mahoney JD, Hansen DJ, Scott KJ, Hicks MB, Mayr SM, Redmond MS (1990) Toxicity of cadmium in sediments: the role of acid volatile sulphide. Environ Toxicol Chem 9:1487–1502

    Article  CAS  Google Scholar 

  7. DiToro DM, McGrath JA, Hansen DJ, Berry WJ, Paquin PR, Mathew R, Wu KB, Santore RS (2005) Predicting sediment toxicity using a sediment biotic ligand model: methodology and initial application. Environ Toxicol Chem 24:2410–2427

    Article  CAS  Google Scholar 

  8. EPA-SAB-EPEC-95-020 (1995) Review of the agency’s approach for developing sediment criteria for five metals (cadmium, copper, lead, nickel, and zinc), Science Advisory Board of U.S. Environmental Protection Agency, Washington, DC, USA

  9. EPA-600-R-02-011 (2005) Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: metal mixtures (cadmium, copper, lead, nickel, silver and zinc), U.S. Environmental Protection Agency, Washington, DC, USA

  10. Field JG, Clarke KR, Warwick RM (1982) A practical strategy for analysing multispecies distribution patterns. Mar Ecol Prog Ser 8:37–52

    Article  Google Scholar 

  11. Grethuysen CV (2006) Trace metals in floodplain lake sediments-SEM/AVS as indicator of bioavailability and ecological effects. Ph. D Thesis. Wagening University, Wagening, The Netherlands

  12. Hansen DJ, Berry WJ, Boothman WS, Di Toro DM, Robson DL, Ankley GT, Ma D, Yan Q, Pesch CE (1996) Predicting the toxicity of metal-contaminated field sediments using interstitial concentrations of metals and AVS normalizations. Environ Toxicol Chem 15:2080–2094

    Article  CAS  Google Scholar 

  13. Lawra AG, James LJH, William IW, Kevin AJ (2001) Seasonal bioavailability of sediment-associated heavy metals along the Mississippi river floodpain. Chemosphere 45:643–651

    Article  Google Scholar 

  14. Li F, Wei XG, Yu GH, Wen YM, He SY, Zhang L, Luo HP, Huang YY,Ren LL (2006) The investigation on the present situations of heavy metal pollution of sediments in Foshan Waterway. Adm Tech Environ Monotoring 18:12–18

    CAS  Google Scholar 

  15. Liu WX, Luan ZK, Tang HX (1999) Use of the sediment quality triad to assess metal contamination in freshwater superficial sediments from the Le An River, china. Water Air Soil Pollut 113:227–239

    Article  CAS  Google Scholar 

  16. Mackey AP, Mackay S (1996) Spatial distribution of acid volatile sulfide concentration and metal bio-availability in mangrove sediments from the Brisbane River, Australia. Environ Pollut 93:205–209

    Article  CAS  Google Scholar 

  17. Naylora C, Davisona W, Motelica-Heinoa M, Van Den Bergb GA, Van Der Heijdt LM (2006) Potential kinetic availability of metals in sulfuric freshwater sediments. Sci Total Environ 357:208–220

    Article  Google Scholar 

  18. Warwick RM, Clarke KR (1993) Comparing the severity of disturbance: a meta-analysis of marine macrobenthic community data. Mar Ecol Prog Ser 92:221–231

    Article  Google Scholar 

Download references


Financial support of the National Nature Science Foundation of China [40071074] and Project Management Office of Second Pearl River Delta Urban Environment Project(PRD2)-Foshan Subproject.

Author information



Corresponding author

Correspondence to Feng Li.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Li, F., Wen, YM. & Zhu, PT. Bioavailability and Toxicity of Heavy Metals in a Heavily Polluted River, in PRD, China. Bull Environ Contam Toxicol 81, 90–94 (2008).

Download citation


  • AVS (acid volatile sulfide)
  • SEM (simultaneously extracted metals)
  • Toxicity
  • Heavily polluted river sediments