Skip to main content

Effects of the Glyphosate Active Ingredient and a Formulation on Lemna gibba L. at Different Exposure Levels and Assessment End-Points

Abstract

The use of formulations of the herbicide glyphosate in transgenic crops of the Pampa’s plains of Argentina has extensively increased, though there is scarce information of its impact on non-target vascular plants from agro-ecosystem related surface waters. The sensitivity of a local clone of the macrophyte Lemna gibba L. to glyphosate active principle and Roundup Max formulation was studied in standardized laboratory conditions. Phytotoxic effects, considering the aquatic route, at a concentration range of glyphosate between 0.5 and 80 mg L−1 as active ingredient during 10 days of exposure were assessed on plant population growth, frond growth, shape and number, total chlorophyll content and colony architecture. Exposure to 1 mg L−1 of glyphosate (an expected environmental concentration) affects all the studied assessment endpoints, except for population growth and chlorophyll content. Equivalent concentrations of this herbicide as the active ingredient or RoundupMax indicate higher phytotocity of the formulation. Exposed plants at concentrations of herbicide between 1 and 7.5 mg L−1 exhibit after two days a recovery of the multiplication rate. Frond aggregation and longer stipe was detected between 1 and 15 mg L−1 of glyphosate, determining more open colony architecture. At higher concentrations of the herbicide fronds break-up. Comparisons with literature data indicate a higher sensitivity of the L. gibba local clone with respect to L. minor and algal species, and also a similar response to the herbicide in field experiments with the same species.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. AOAC (1990) Official methods of analysis of the AOAC. Method 983.10. Association of Official Analytical Chemists Inc., Virginia, p 205

  2. Blackburn L, Boutin C (2003) Subtle effects of herbicide use in the context of genetically modified crops: a case study with glyphosate (Roundup R). Ecotoxicology 12:271–285

    Article  CAS  Google Scholar 

  3. Boutin C, Freemark KE, Keddy CJ (1993) Proposed guidelines for registration of chemical pesticides: non target plant testing and evaluation. Technical report series 145. Canadian Wildlife Service, Ottawa

    Google Scholar 

  4. Cox C (2003) Herbicide fact sheet glyphosate (Roundup). J Pestic Reform 18:3–17, 1998, updated 4/03

    Google Scholar 

  5. Environment Canada (1999) Biological test method: test for measuring the inhibition of growth using the freshwater macrophyte, Lemna minor. Environmental Protection Service, EPS 1/RM/37, Ottawa

  6. Krogh KA, Halling-Sorensen B, Mogensen BB, Vejrup KV (2003) Environmental properties and effect of non ionic surfactants adjuvants in pesticides: a review. Chemosphere 50:871–901

    Article  CAS  Google Scholar 

  7. Lockhart WL, Billeck BN, Baron CL (1989) Bioassays with a floating aquatic plant (Lemna minor) for effects of sprayed and dissolved glyphosate. Hydrobiologia 188/189:353–359

    Google Scholar 

  8. Martin ML, Sobrero MC, Rivas C, Rimoldi F, Ronco A (2003) Impacto del uso de pesticidas asociado a la siembra directa sobre especies no blanco. Flora riparia y acuática. In: Memorias Conferencia Internacional Usos del Agua, Cartagena de Indias, pp 27–31

  9. Martin ML, Ronco A (2006) Effects of mixtures of pesticides used in the direct seeding technique on non-target plant seeds. Bull Environ Contam Toxicol 77:228–236

    Article  CAS  Google Scholar 

  10. Michel A, Johnson RD, Duke SO, Scheffler BE (2004) Dose-response relationships between herbicides with different modes of action and growth of Lemna paucicostata: an improved ecotoxicological method. Environ Toxicol Chem 23:1074–1079

    Article  CAS  Google Scholar 

  11. Paradiso Giles M (2000) Variabilidad interclonal en Lemna gibba L. frente a dos herbicidas con distinto modo de acción. Master Thesis. Facultad de Ciencias, Universidad de la República, Montevideo

  12. Peruzzo P, Marino D, Cremonte C, Da Silva M, Porta A, Ronco A (2003) Impacto de pesticidas en aguas superficiales y sedimentos asociado a cultivos por siembra directa. In: Memorias Conferencia Internacional Usos del Agua, Cartagena de Indias, pp 135–142

  13. Peterson HG, Boutin C, Martin PA, Freemark K, Ruecker NJ, Moody MJ (1994) Aquatic phyto-toxicity of 23 pesticides applied at expected environmental concentrations. Aquat Toxicol 28:275–292

    Article  CAS  Google Scholar 

  14. Ralph PJ (2000) Herbicide toxicity of Halophila ovalis assessed by chlorophyll a fluorescence. Aquat Bot 66:141–152

    Article  CAS  Google Scholar 

  15. Salisbury FB, Ross CW (1994) Fisiología vegetal. Grupo Editorial Iberoamérica, México

    Google Scholar 

  16. Satorre EH (2005) Cambios tecnológicos en la agricultura Argentina actual. Ciencia Hoy 15:24–31

    Google Scholar 

  17. Sobrero MC, Beltrano J, Ronco A (2004) Comparative response of Lemnaceae clones to Cu(II), Cr(VI) and Cd(II) toxicity. Bull Environ Contam Toxicol 73:416–423

    Article  CAS  Google Scholar 

  18. Tsui MTK, Chu LM (2003) Aquatic toxicity of glyphosate-based formulations: comparison between different organisms and the effects of environmental factors. Chemosphere 52:1189–1197

    Article  CAS  Google Scholar 

  19. WSSA (1994) Glyphosate. In: Herbicide handbook, 7th edn. The Weed Science Society of America, Lawrence, pp 149–152

  20. Zar JH (1996) Biostatistical analysis. Prentice Hall, New Jersey

    Google Scholar 

Download references

Acknowledgments

We thank P. Peruzzo for assistance in chemical analysis and C. Knipp for editorial suggestions. Financial support was from the National Agency for Promotion of Science and Technology ANPCyT (project PICT2000 8480) and the National University of La Plata, Argentina.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. E. Ronco.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sobrero, M.C., Rimoldi, F. & Ronco, A.E. Effects of the Glyphosate Active Ingredient and a Formulation on Lemna gibba L. at Different Exposure Levels and Assessment End-Points. Bull Environ Contam Toxicol 79, 537–543 (2007). https://doi.org/10.1007/s00128-007-9277-5

Download citation

Keywords

  • Glyphosate
  • Roundup
  • Total Chlorophyll Content
  • Glyphosate Concentration
  • Local Clone