Skip to main content

Advertisement

Log in

Bio-safety Assessment of Validamycin Formulation on Bacterial and Fungal Biomass in Soil Monitored by Real-Time PCR

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Asano N, Takeuchi M, Ninomiya K, Kameda Y, Matsui K (1984) Microbial degradation of validamycin A by Flavobacterium saccharophilum. Enzymatic cleavage of C-N linkage in validoxylamine A. J Antibiot 37:859

    CAS  Google Scholar 

  • Bart L, Margreet B, Alfons CRCV, Bruno PAC, Bart PHJT (2006) Real-time PCR for detection and quantification of fungal and oomycete tomato pathogens in plant and soil samples. Plant Science 171: 155–165

    Article  CAS  Google Scholar 

  • Castaldini M, Turrini A, Sbrana C, et al. (2005) Impact of Bt corn on rhizospheric and soil eubacterial communities and on beneficial mycorrhizal symbiosis in experimental microcosms. Appl Environ Microbiol 71(11):6719–6729

    Article  CAS  Google Scholar 

  • Crecchio C, Curci M, Pizzigallo MDR, Ricciuti P, Ruggiero P (2001) Molecular approaches to investigate herbicide-induced bacterial community changes in soil microcosms. Biol Fertil Soils 33: 460–466

    Article  CAS  Google Scholar 

  • Dewhurst IC (2001) Toxicological assessment of biological pesticides. Toxicol Lett 120: 67–72

    Article  CAS  Google Scholar 

  • Donegan KK, Palm CJ, Fieland VJ, Porteous LA, Ganio LM, Schallr DL, Bucal LQ, Seidler RJ (1995) Changes in levels, species and DNA fingerprints of soil microorganisms associated with cotton expressing the Bt. Appl Soil Ecol 2:111–124

    Article  Google Scholar 

  • England LS, Holmes SB, Trevors JT (1998) Persistence of viruses and DNA in soil. World J Microbiol Biotechnol 14: 163–169

    Article  CAS  Google Scholar 

  • Ferguson RL, Buckley EN, Palumbo AV (1984) Response of marine bacterioplankton to differential filtration and confinement. Appl Environ Microbiol 47: 49–55

    CAS  Google Scholar 

  • Fogel GB, Collins CR, Li J, Brunk CF (1999) Prokaryotic genome size and SSU rDNA copy number: estimation of microbial relative abundance from a mixed population. Microb Ecol 38: 93–113

    Article  CAS  Google Scholar 

  • Gonod LV, Martin-Laurent F, Chenu C (2006) 2,4-D impact on bacterial communities, and the activity and genetic potential of 2,4-D degrading communities in soil. FEMS Microbiol Ecol 58(3): 529–537

    Article  CAS  Google Scholar 

  • Griffiths BS, Caul S, Thompson J, Birch AN, Scrimgeour C, Cortet J, Foggo A, Hackett CA, Krogh PH. Soil microbial and faunal community responses to bt maize and insecticide in two soils. J Environ Qual 35(3):734–741

  • He JZ, Xu ZH, Hughes J (2005) Analyses of soil fungal communities in adjacent natural forest and hoop pine plantation ecosystems of subtropical Australia using molecular approaches based on 18S rRNA genes. FEMS Microbiol Lett 247(1): 91–100

    Article  CAS  Google Scholar 

  • Hibbett DS (1992) Ribosomal RNA and fungal systematics. Trans Mycol Soc Jpn 33:533–556

    CAS  Google Scholar 

  • Hunt J, Boddy L, Randerson PF, Rogers HJ (2004) An Evaluation of 18S rDNA Approaches for the study of fungal diversity in grassland soils. Microbiol Ecol 47: 385–395

    Article  CAS  Google Scholar 

  • Kolb S, Knief C, Stubner S, Conrad R (2003) Quantitative detection of metanotrophs in soil by novel pmoA targeted real-time PCR assays. Appl Environ Microbiol 69: 2423–2429

    Article  CAS  Google Scholar 

  • Lees AK, Cullen DW, Sullivan L, Nicolson MJ (2002) Development of conventional and quantitative real-time PCR assays for the detection and identification of Rhizoctonia solani AG-3 in potato and soil. Plant Pathol 51: 293–302

    Article  CAS  Google Scholar 

  • Liu WT, Marsh TL, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63: 4516–4522

    CAS  Google Scholar 

  • Lu Z, Min H, Li N, Shao T, Ye Y (2006) Variations of bacterial community structure in flooded paddy soil contaminated with herbicide quinclorac. J Environ Sci Health B 41(6):821–832

    CAS  Google Scholar 

  • National Institute for Occupational Safety and Health (NIOSH). (1993). Registry of Toxic Effects of Chemical Substances (RTECS). NIOSH. Cincinnati, OH

    Google Scholar 

  • Qian H, Cheng Q (2005) An efficient method for separation of humic compounds and DNA from soil suitable for PCR analysis of microorganism International symposium on phytoremdiation and ecosystem health. p. 35

  • Qian H, Hu B, Wang Z, Xu X, Hong T (C) Effects of Validamycin on Some Enzymatic Activities in Soil. Environ Monit Assess 125(1–3):1–8

    Article  CAS  Google Scholar 

  • Rasmussen R (2001) Quantification on the light cycle. In: Meuer S, Wittwer C, Nakagawara K (eds.) Rapid cycle real-time PCR methods and applications. Springer, Heidelberg, p. 21

    Google Scholar 

  • Reichardt W, Mascarina G, Padre B, Doll J (1997) Microbial communities of continuously cropped, irrigated rice fields. Appl Environ Microbiol 63: 233–238

    CAS  Google Scholar 

  • Schaade L, Kockelkorn P, Ritter K, Kleines M (2000) Detection of cytomegalovirus DNA in human specimens by Light-Cycler PCR. J Clin Microbiol 38: 4006–4009

    CAS  Google Scholar 

  • Stubner S (2004) Quantification of Gram-negative sulphate-reducing bacteria in rice field soil by 16S rRNA gene-targeted real-time PCR. J Microbiol Methods 57: 219–230

    Article  CAS  Google Scholar 

  • Waldrop MP, Firestone MK (2006) Response of microbial community composition and function to soil climate change. Microbiol Ecol 52(4):716–724

    Article  CAS  Google Scholar 

  • Wang J, Feng Y, Luo S (2005) Effects of Bt corn straw decomposition on soil enzyme activities and soil fertility. Chin J Appl Ecol 2005, 16(3): 524–528

    CAS  Google Scholar 

  • Wardle DA, Giller KE (1997) The quest for a contemporary ecological dimension to soil biology. Soil Biol Biochem 28: 1549–1554

    Article  Google Scholar 

  • Wu W, Ye Q Min H (2004a) Effect of straws from Bt-transgenic rice on selected biological activities in water-flooded soil. Euro J Soil Biol 40: 15–22

    Article  Google Scholar 

  • Wu W, Ye Q, Min H, Duan X, Jin W (2004b) Bt-transgenic rice straw affects the culturable microbiota and dehydrogenase and phosphatase activities in a flooded paddy soil. Soil Biol Biochem 36:289–295

    Article  CAS  Google Scholar 

  • Zhang JF, Zheng YG, Xue YP, Shen YC (2005) Purification and characterization of the glucoside 3-dehydrogenase produced by a newly isolated Stenotrophomonas maltrophiliaCCTCC M 204024. Appl Microbiol Biotechnol 15:1–8

    Google Scholar 

  • Zheng YG, Zhang XF, Shen YC (2005) Microbial transformation of validamycin A to valienamine by immobilized cells. Biocatal Biotransform 23:71–77

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (no. 20607020), the Natural Science Foundation of Zhejiang Province (no. Y504076) and the Ministry of Education Key Laboratory of Environment Remediation and Ecological Health of China (no. 050402).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haifeng Qian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qian, H., Hu, B., Cao, D. et al. Bio-safety Assessment of Validamycin Formulation on Bacterial and Fungal Biomass in Soil Monitored by Real-Time PCR. Bull Environ Contam Toxicol 78, 239–244 (2007). https://doi.org/10.1007/s00128-007-9148-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-007-9148-0

Keywords

Navigation