Incidence and predictive factors of Internet addiction among Chinese secondary school students in Hong Kong: a longitudinal study



Internet use has global influences on all aspects of life and has become a growing concern. Cross-sectional studies on Internet addiction (IA) have been reported but causality is often unclear. More longitudinal studies are warranted.


We investigated incidence and predictors of IA conversion among secondary school students. A 12-month longitudinal study was conducted among Hong Kong Chinese Secondary 1–4 students (N = 8286). Using the 26-item Chen Internet Addiction Scale (CIAS; cut-off >63), non-IA cases were identified at baseline. Conversion to IA during the follow-up period was detected, with incidence and predictors derived using multi-level models.


Prevalence of IA was 16.0% at baseline and incidence of IA was 11.81 per 100 person-years (13.74 for males and 9.78 for females). Risk background factors were male sex, higher school forms, and living with only one parent, while protective background factors were having a mother/father with university education. Adjusted for all background factors, higher baseline CIAS score (ORa = 1.07), longer hours spent online for entertainment and social communication (ORa = 1.92 and 1.63 respectively), and Health Belief Model (HBM) constructs (except perceived severity of IA and perceived self-efficacy to reduce use) were significant predictors of conversion to IA (ORa = 1.07–1.45).


Prevalence and incidence of IA conversion were high and need attention. Interventions should take into account risk predictors identified, such as those of the HBM, and time management skills should be enhanced. Screening is warranted to identify those at high risk (e.g. high CIAS score) and provide them with primary and secondary interventions.

This is a preview of subscription content, access via your institution.


  1. 1.

    Byun S, Ruffini C, Mills JE, Douglas AC, Niang M, Stepchenkova S, Lee SK, Loutfi J, Lee JK, Atallah M, Blanton M (2009) Internet addiction: metasynthesis of 1996–2006 quantitative research. Cyberpsychol Behav 12(2):203–207. doi:10.1089/cpb.2008.0102

    Article  PubMed  Google Scholar 

  2. 2.

    Young KS (2004) Internet addiction—a new clinical phenomenon and its consequences. Am. Behav Sci 48(4):402–415. doi:10.1177/0002764204270278

    Article  Google Scholar 

  3. 3.

    Caplan SE (2010) Theory and measurement of generalized problematic Internet use: a two-step approach. Comput Hum Behav 26(5):1089–1097. doi:10.1016/j.chb.2010.03.012

    Article  Google Scholar 

  4. 4.

    Shek DT, Tang VM, Lo CY (2008) Internet addiction in Chinese adolescents in Hong Kong: assessment, profiles, and psychosocial correlates. Sci World J 8:776–787. doi:10.1100/tsw.2008.104

    Article  Google Scholar 

  5. 5.

    Cheng C, Li AY (2014) Internet addiction prevalence and quality of (real) life: a meta-analysis of 31 nations across seven world regions. Cyberpsychol Behav Soc Netw 17(12):755–760. doi:10.1089/cyber.2014.0317

    Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    China Internet Network Information Center (2015) Statistical reports on Internet development in China: the 36th survey report

  7. 7.

    Mak KK, Lai CM, Watanabe H, Kim DI, Bahar N, Ramos M, Young KS, Ho RC, Aum NR, Cheng C (2014) Epidemiology of internet behaviors and addiction among adolescents in six Asian countries. Cyberpsychol Behav Soc Netw 17(11):720–728. doi:10.1089/cyber.2014.0139

    Article  PubMed  Google Scholar 

  8. 8.

    Iskender M, Akin A (2010) Social self-efficacy, academic locus of control, and internet addiction. Comput Educ 54(4):1101–1106. doi:10.1016/j.compedu.2009.10.014

    Article  Google Scholar 

  9. 9.

    Ghassemzadeh L, Shahraray M, Moradi A (2008) Prevalence of internet addiction and comparison of internet addicts and non-addicts in Iranian high schools. Cyberpsychol Behav 11(6):731–733. doi:10.1089/cpb.2007.0243

    Article  PubMed  Google Scholar 

  10. 10.

    Park SK, Kim JY, Cho CB (2008) Prevalence of Internet addiction and correlations with family factors among South Korean adolescents. Adolescence 43(172):895–909

    PubMed  Google Scholar 

  11. 11.

    Lam LT (2015) Parental mental health and Internet Addiction in adolescents. Addict Behav 42:20–23. doi:10.1016/j.addbeh.2014.10.033

    Article  PubMed  Google Scholar 

  12. 12.

    Yen JY, Ko CH, Yen CF, Chen CS, Chen CC (2009) The association between harmful alcohol use and Internet addiction among college students: comparison of personality. Psychiatry Clin Neurosci 63(2):218–224. doi:10.1111/j.1440-1819.2009.01943.x

    Article  PubMed  Google Scholar 

  13. 13.

    Li D, Zhang W, Li X, Zhen S, Wang Y (2010) Stressful life events and problematic Internet use by adolescent females and males: A mediated moderation model. Comput Hum Behav 26(5):1199–1207

    Article  Google Scholar 

  14. 14.

    Fu KW, Chan WS, Wong PW, Yip PS (2010) Internet addiction: prevalence, discriminant validity and correlates among adolescents in Hong Kong. Br J Psychiatry 196(6):486–492. doi:10.1192/bjp.bp.109.075002

    Article  PubMed  Google Scholar 

  15. 15.

    Ko CH, Yen JY, Yen CF, Lin HC, Yang MJ (2007) Factors predictive for incidence and remission of internet addiction in young adolescents: a prospective study. Cyberpsychol Behav 10(4):545–551. doi:10.1089/cpb.2007.9992

    Article  PubMed  Google Scholar 

  16. 16.

    Ko CH, Wang PW, Liu TL, Yen CF, Chen CS, Yen JY (2015) Bidirectional associations between family factors and Internet addiction among adolescents in a prospective investigation. Psychiatry Clin Neurosci 69(4):192–200. doi:10.1111/pcn.12204

    Article  PubMed  Google Scholar 

  17. 17.

    Ko CH, Yen JY, Chen CS, Yeh YC, Yen CF (2009) Predictive values of psychiatric symptoms for internet addiction in adolescents: a 2-year prospective study. Arch Pediatr Adolesc Med 163(10):937–943. doi:10.1001/archpediatrics.2009.159

    Article  PubMed  Google Scholar 

  18. 18.

    Chen YL, Chen SH, Gau SS (2015) ADHD and autistic traits, family function, parenting style, and social adjustment for Internet addiction among children and adolescents in Taiwan: a longitudinal study. Res Dev Disabil 39:20–31. doi:10.1016/j.ridd.2014.12.025

    Article  PubMed  Google Scholar 

  19. 19.

    Chang FC, Chiu CH, Lee CM, Chen PH, Miao NF (2014) Predictors of the initiation and persistence of internet addiction among adolescents in Taiwan. Addict behav 39(10):1434–1440. doi:10.1016/j.addbeh.2014.05.010

    Article  PubMed  Google Scholar 

  20. 20.

    Shek DT, Yu L (2016) Adolescent Internet addiction in Hong Kong: prevalence, change, and correlates. J Pediatr Adolesc Gynecol 29(1 Suppl):S22–S30. doi:10.1016/j.jpag.2015.10.005

    Article  PubMed  Google Scholar 

  21. 21.

    Shek DT, Tang VM, Lo CY (2009) Evaluation of an Internet addiction treatment program for Chinese adolescents in Hong Kong. Adolescence 44(174):359–373

    PubMed  Google Scholar 

  22. 22.

    Shek DT, Yu L (2011) Prevention of adolescent problem behavior: longitudinal impact of the Project P.A.T.H.S. in Hong Kong. Sci World J 11:546–567. doi:10.1100/tsw.2011.33

    Article  Google Scholar 

  23. 23.

    Strecher VJ, Rosenstock IM (1997) The health belief model. In: Baum A, Newman S, Weinman J, West R, McManus C (eds) Cambridge handbook of psychology, health and medicine. Cambridge University Press, New York

    Google Scholar 

  24. 24.

    Education Commission (2004) Education Statistics. Eduation Comission, Hong Kong SAR.

  25. 25.

    Chen S, Weng L, Su Y, Wu H, Yang P (2003) Development of a Chinese Internet addiction scale and its psychometric study. Chin J Psychol 45(3):279

    Google Scholar 

  26. 26.

    Mak KK, Lai CM, Ko CH, Chou C, Kim DI, Watanabe H, Ho RC (2014) Psychometric properties of the Revised Chen Internet Addiction Scale (CIAS-R) in Chinese adolescents. J Abnorm Child Psychol 42(7):1237–1245. doi:10.1007/s10802-014-9851-3

    Article  PubMed  Google Scholar 

  27. 27.

    Ko CH, Yen CF, Yen CN, Yen JY, Chen CC, Chen S-H (2005) Screening for Internet addiction: an empirical study on cut-off points for the Chen Internet Addiction Scale. Kaohsiung J Med Sci 21(12):545–551

    Article  PubMed  Google Scholar 

  28. 28.

    Bernstein IH, Keith JB (1991) Reexamination of Eisen, Zellman, and McAlister’s Health Belief Model questionnaire. Health Educ Q 18(2):207–220

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Heyward WL, Osmanov S, Saba J, Esparza J, Belsey E, Stoneburner R, Kaldor J, Smith PG (1994) Preparation for phase III HIV vaccine efficacy trials: methods for the determination of HIV incidence. AIDS 8(9):1285–1291

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Tam VC (2009) Homework involvement among Hong Kong primary school students. Asia Pacific J Educ 29(2):213–227

    Article  Google Scholar 

  31. 31.

    Wu AMS, Lau JTF, Cheng KM, Law RW, Tse VWS, Lau MMC (2016) Direct and interaction effects of co-existing familial risk factors and protective factors associated with Internet addiction among Chinese students in Hong Kong. J Early Adolesc. doi:10.1177/0272431616671826

    Google Scholar 

  32. 32.

    Leadbeater BJ, Kuperminc GP, Blatt SJ, Hertzog C (1999) A multivariate model of gender differences in adolescents’ internalizing and externalizing problems. Dev Psychol 35(5):1268–1282

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Piko BF, Fitzpatrick KM, Wright DR (2005) A risk and protective factors framework for understanding youth’s externalizing problem behavior in two different cultural settings. Eur Child Adolesc Psychiatry 14(2):95–103. doi:10.1007/s00787-005-0437-z

    Article  PubMed  Google Scholar 

  34. 34.

    Chen JH, Wu AM, Tong K-k (2014) Evaluation of psychometric properties of the inventory of gambling motives, attitudes and behaviors among Chinese Adolescents. Int J Ment Health Addict 13(3):361–375

    Article  Google Scholar 

  35. 35.

    Ko CH, Yen JY, Chen CC, Chen SH, Yen CF (2005) Gender differences and related factors affecting online gaming addiction among Taiwanese adolescents. J Nerv Ment Dis 193(4):273–277

    Article  PubMed  Google Scholar 

  36. 36.

    Crijnen AA, Achenbach TM, Verhulst FC (1997) Comparisons of problems reported by parents of children in 12 cultures: total problems, externalizing, and internalizing. J Am Acad Child Adolesc Psychiatry 36(9):1269–1277. doi:10.1097/00004583-199709000-00020

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Bergmuller S (2013) The relationship between cultural individualism-collectivism and student aggression across 62 countries. Aggress Behav 39(3):182–200. doi:10.1002/ab.21472

    Article  PubMed  Google Scholar 

  38. 38.

    Census and Statistics Department (2015) Thematic household survey report no. 54–Information technology usage and penetration. Census and Statistics Department-HKSAR, Hong Kong

    Google Scholar 

  39. 39.

    de Haan AM, Boon AE, de Jong JT, Hoeve M, Vermeiren RR (2013) A meta-analytic review on treatment dropout in child and adolescent outpatient mental health care. Clin Psychol Rev 33(5):698–711. doi:10.1016/j.cpr.2013.04.005

    Article  PubMed  Google Scholar 

  40. 40.

    Langer DA, Wood JJ, Wood PA, Garland AF, Landsverk J, Hough RL (2015) Mental health service use in schools and non-school-based outpatient settings: comparing predictors of service use. School Ment Health (London) 7(3):161–173. doi:10.1007/s12310-015-9146-z

    Article  Google Scholar 

  41. 41.

    Young KS (1998) Caught in the net: how to recognize the signs of internet addiction–and a winning strategy for recovery. Wiley, New York

    Google Scholar 

  42. 42.

    Du YS, Jiang W, Vance A (2010) Longer term effect of randomized, controlled group cognitive behavioural therapy for Internet addiction in adolescent students in Shanghai. Aust N Z J Psychiatry 44(2):129–134. doi:10.3109/00048670903282725

    Article  PubMed  Google Scholar 

  43. 43.

    Zhang L (2009) The applications of group mental therapy and sports exercise prescriptions in the intervention of Internet addiction disorder. Psychol Sci 3:738–741 (in Chinese)

    Google Scholar 

  44. 44.

    Cao F, Su LY, Gao XP (2007) Control study of group psychotherapy on middle school students with Internet overuse. Chin Ment Health J 21(5):346–358 (in Chinese)

    Google Scholar 

Download references


We would like to express our sincere gratitude to the secondary schools that participated in this study by facilitating us in recruiting participants. Thanks are extended to all participants who took part in the study, and other fieldworkers who helped in the entire data collection period. This project was supported by Award Number 09100591 from Health and Medical Research Fund (HMRF) in Hong Kong. HMRF had no role in the study design, collection, analysis or interpretation of the data, writing of the manuscript, or the decision to submit the paper for publication.

Author information



Corresponding author

Correspondence to Joseph T. F. Lau.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards statement

The manuscript does not contain clinical studies or patient data. Each participant gave informed consent prior to their inclusion in the study. Ethics approval was obtained from the Survey and Behavioral Ethics Committee, the Chinese University of Hong Kong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lau, J.T.F., Gross, D.L., Wu, A.M.S. et al. Incidence and predictive factors of Internet addiction among Chinese secondary school students in Hong Kong: a longitudinal study. Soc Psychiatry Psychiatr Epidemiol 52, 657–667 (2017).

Download citation


  • Internet addiction
  • Chinese
  • Adolescents
  • Health belief model
  • Incidence