Skip to main content

Advertisement

Log in

Hosts of Sn in reduced deep-seated W skarn systems: A case study on the world-class scheelite skarn deposit, Zhuxi, South China

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Tin (Sn) and tungsten (W) behave incompatibly in reduced magmatic systems and may become enriched in late highly-evolved melts. Nonetheless, Sn and W rarely concentrate in the same deposit. In deposits formed by Sn- and W-bearing granites, this separation may be due to the contrasting behavior of Sn and W during exsolution of a magmatic fluid or the scavenging of Sn by silicate minerals. We illustrate the separation of Sn and W for the world-class Zhuxi W skarn deposit (South China). Although tin orebodies have not yet been identified within the Zhuxi deposit, tiny (commonly < 20 μm) cassiterite grains are widespread within the endoskarn and the retrogressed exoskarn. We analyzed the W and Sn contents of the magmatic minerals biotite and ilmenite in ore-forming granites and the prograde anhydrous skarn minerals garnet, pyroxene and vesuvianite. Our data show that (i) magmatic ilmenite (65.5–79.1 ppm Sn; 8.7–14.3 ppm W) and biotite (109–120 ppm Sn; 1.3–6.3 ppm W) from biotite monzogranite strongly enrich Sn relative to W, implying that W partitioned more strongly into the magmatic fluids than Sn, (ii) there is 100 Kt non-recoverable Sn within the Zhuxi deposit in addition to the certified 3.44 Mt WO3 reserves, and (iii) W is mainly hosted in scheelite, whereas Sn is dominantly sequestered in prograde skarn minerals, most importantly garnet (76–4086 ppm Sn, < 42 ppm W), pyroxene (3–103 ppm Sn, < 1 ppm W), and vesuvianite (43–361 ppm Sn, < 2 ppm W). The formation of secondary cassiterite requires the release of silicate-bound Sn by alteration of primary skarn minerals, which depends on the availability of magmatic or metamorphic fluids. Deep-seated granites such as those associated with the Zhuxi skarn deposit, which crystallized at 5 km to 12.6 km depth, do not release or mobilize copious amounts of fluid. Therefore, the Zhuxi deposit, like other deep-seated reduced skarn systems shows little alteration and most Sn remains in silicate minerals and is economically non-recoverable. Thus, reduced, deep-seated W skarn systems are unlikely to have associated Sn orebodies even if significant amounts of Sn are present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Annen C, Blundy JD, Sparks RSJ (2006) The genesis of intermediate and silicic magmas in deep crustal hot zones. J Petrol 47:505–539

    Article  CAS  Google Scholar 

  • Annen C, Blundy JD, Sparks RSJ (2008) The sources of granitic melt in Deep Hot Zones. Trans R Soc Edinb Earth Sci 97:297–309

    Article  Google Scholar 

  • Audétat A, Günther D, Heinrich CA (1998) Formation of a magmatic-hydrothermal ore deposit: Insights with LA-ICP-MS analysis of fluid inclusions. Science 279:2091–2094

    Article  Google Scholar 

  • Audétat A, Günther D, Heinrich CA (2000) Causes for large-scale metal zonation around mineralized plutons: Fluid inclusion LA-ICP-MS evidence from the Mole granite, Australia. Econ Geol 95:1563–1581

    Article  Google Scholar 

  • Azadbakht Z, Lentz DR, McFarlane CRM, Whalen JB (2020) Using magmatic biotite chemistry to differentiate barren and mineralized Silurian-Devonian granitoids of New Brunswick. Canada Contrib Mineral Petrol 175:24

    Google Scholar 

  • Breiter K, Vašinová Galiová M, Hložková M, Korbelová Z, Kynický J, Costi HT (2023) Trace element composition of micas from rare-metal granites of different geochemical affiliations. Lithos 446–447:107135

    Article  Google Scholar 

  • Blundy J, Cashman K (2001) Ascent-driven crystallisation of dacite magmas at Mount St Helens, 1980–1986. Contrib Mineral Petrol 140:631–650

    Article  CAS  Google Scholar 

  • Chen J, Halls C, Stanley CJ (1992) Tin-bearing skarns of South China: Geological setting and mineralogy. Ore Geol Rev 7:225–248

    Article  Google Scholar 

  • Chi G, Guha J, Lu HZ (1993) Separation mechanism in the formation of proximal and distal tin polymetallic deposits, Xinlu ore field, southern China; evidence from fluid inclusion data. Econ Geol 88:916–933

    Article  Google Scholar 

  • Clemens JD, Vielzeuf D (1987) Constraints on melting and magma production in the crust. Earth Planet Sci Lett 86:287–306

    Article  CAS  Google Scholar 

  • Clemens JD, Stevens G (2012) What controls chemical variation in granitic magmas? Lithos 134–135:317–329

    Article  Google Scholar 

  • Eadington PJ, Kinealy K (1983) Some aspects of the hydrothermal reactions of tin during skarn formation. J Geol Soc Aust 30:461–471

    Article  CAS  Google Scholar 

  • Einaudi MT, Meinert LD, Newberry RJ (1981) Skarn deposits. Econ Geol 75:317–391

    Google Scholar 

  • Fan X, Zhang Z, Hou Z, Pan X, Zhang X, Sheng Y, Dai J, Wu X (2020) Mineralogical characteristics and its metallogenic implications of ore-bearing granites in the Pingmiao W-Cu deposit, Dahutang tungsten ore field, South China. Acta Petrol Sin 36:3757–3782 ((in Chinese with English abstract))

    Article  Google Scholar 

  • Foster MD (1960) Interpretation of the composition of trioctahedral micas: US Geol Surv Prof Pap 354-B: pp 11–48

  • Fyfe WS, Price NJ, Thompson AB (1978) Fluids in the earth’s crust: their significance in metamorphic, tectonic, and chemical transport processes. Elsevier Scientific Pub Co, UK

  • Guo J, Zhang G, Xiang L, Zhang R, Zhang L, Sun W (2022) Combined mica and apatite chemical compositions to trace magmatic-hydrothermal evolution of fertile granites in the Dachang Sn-polymetallic district. South China Ore Geol Rev 151:105168

    Article  Google Scholar 

  • Haapala I (1997) Magmatic and postmagmatic processes in tin-mineralized granites: topaz-bearing leucogranite in the Eurajoki rapakivi granite stock, Finland. J Petrol 38:1645–1659

    Article  CAS  Google Scholar 

  • Halley SW, Walshe JL (1995) A reexamination of the Mount Bischoff cassiterite sulfide skarn, western Tasmania. Econ Geol 90:1676–1693

    Article  CAS  Google Scholar 

  • Harlaux M, Kouzmanov K, Gialli S, Clark AH, Laurent O, Corthay G, Prado Flores E, Dini A, Chauvet A, Ulianov A, Chiaradia M, Menzies A, Villón Durand G, Kalinaj M, Fontboté L (2021a) The upper Oligocene San Rafael intrusive complex (Eastern Cordillera, southeast Peru), host of the largest-known high-grade tin deposit. Lithos 400–401:106409

    Article  Google Scholar 

  • Harlaux M, Kouzmanov K, Gialli S, Marger K, Bouvier A-S, Baumgartner LP, Rielli A, Dini A, Chauvet A, Kalinaj M, Fontboté L (2021b) Fluid mixing as primary trigger for cassiterite deposition: Evidence from in situ δ18O-δ11B analysis of tourmaline from the world-class San Rafael tin (-copper) deposit. Peru Earth Planet Sci Lett 563:116889

    Article  CAS  Google Scholar 

  • Harlaux M, Marignac C, Carr PA, Mercadier J, Ballouard C, Jegal Y, Kouzmanov K, Foucaud Y, Camacho A, Cauzid J, Cuney M (2023) Polyphase W-Sn mineralization and rare metal magmatism in relation to the late-Variscan tectono-metamorphic evolution of the southeastern French Massif Central. Min Dep. https://doi.org/10.1007/s00126-023-01197-5

    Article  Google Scholar 

  • He X, Zhang D, Di Y, Wu G, Hu B, Huo H, Li N, Li F (2022) Evolution of the magmatic–hydrothermal system and formation of the giant Zhuxi W-Cu deposit in South China. Geosci Front 13:101278

    Article  CAS  Google Scholar 

  • Hedenquist JW, Lowenstern JB (1994) The role of magmas in the formation of hydrothermal ore deposits. Nature 370:519–527

    Article  CAS  Google Scholar 

  • Holtz F, Johannes W (1994) Maximum and minimum water contents of granitic melts: implications for chemical and physical properties of ascending magmas. Lithos 32:149–159

    Article  CAS  Google Scholar 

  • Hong W, Cooke DR, Zhang L, Fox N, Thompson J (2021) The formation of magmatic-hydrothermal features in Sn-mineralized and barren Tasmanian intrusions, Southeast Australia: insights from quartz textures, trace elements, and microthermometry. Econ Geol 116:1917–1948

    Article  Google Scholar 

  • Hu Z, Zhang W, Liu Y, Gao S, Li M, Zong K, Chen H, Hu S (2015) “Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis: application to lead isotope analysis. Anal Chem 87:1152–1157

    Article  CAS  Google Scholar 

  • Huang LC, Jiang SY (2014) Highly fractionated S-type granites from the giant Dahutang tungsten deposit in Jiangnan Orogen, Southeast China: geochronology, petrogenesis and their relationship with W-mineralization. Lithos 202–203:207–226

    Article  Google Scholar 

  • Hyndman DW (1981) Controls on source and depth of emplacement of granitic magma. Geology 9:244–249

    Article  Google Scholar 

  • Jiang SY, Peng NJ, Huang LC, Xu YM, Zhan GL, Dan XH (2015) Geological characteristic and ore genesis of the giant tungsten deposits from the Dahutang ore-concentrated district in northern Jiangxi Province. Acta Petrol Sin 31:639–655 ((in Chinese with English abstract))

    CAS  Google Scholar 

  • Kokh MA, Akinfiev NN, Pokrovski GS, Salvi S, Guillaume D (2017) The role of carbon dioxide in the transport and fractionation of metals by geological fluids. Geochim Cosmochim Acta 197:433–466

    Article  CAS  Google Scholar 

  • Kwak TA (1987) W-Sn skarn deposits: and related metamorphic skarns and granitoids. Elsevier, 1–451

  • Lefebvre MG, Romer RL, Glodny J, Kroner U, Roscher M (2019a) The Hämmerlein skarn-hosted polymetallic deposit and the Eibenstock granite associated greisen, western Erzgebirge, Germany: two phases of mineralization—two Sn sources. Min Dep 54:193–216

    Article  CAS  Google Scholar 

  • Lefebvre MG, Romer RL, Glodny J, Roscher M (2019b) Skarn formation and tin enrichment during regional metamorphism: The Hämmerlein polymetallic skarn deposit. Lithos 348–349:105171

    Article  Google Scholar 

  • Legros H, Lecumberri-Sanchez P, Elongo V, Laurent O, Falck H, Adlakha E, Chelle-Michou C (2020) Fluid evolution of the Cantung tungsten skarn, Northwest Territories, Canada: Differentiation and fluid-rock interaction. Ore Geol Rev 127:103866

    Article  Google Scholar 

  • Legros H, Richard A, Tarantola A, Kouzmanov K, Mercadier J, Vennemann T, Marignac C, Cuney M, Wang RC, Charles N, Bailly L, Lespinasse MY (2019) Multiple fluids involved in granite-related W-Sn deposits from the world-class Jiangxi province (China). Chem Geol 508:92–115

    Article  CAS  Google Scholar 

  • Lehmann B (1990) Metallogeny of tin. Springer, 1–211

  • Lentz DR (1999) Carbonatite genesis: A reexamination of the role of intrusion-related pneumatolytic skarn processes in limestone melting. Geology 27:335–338

    Article  CAS  Google Scholar 

  • Li JX, Fan WM, Zhang LY, Ding L, Yue YH, Xie J, Cai FL, Quan QY, Sein K (2020) Biotite geochemistry deciphers magma evolution of Sn-bearing granite, southern Myanmar. Ore Geol Rev 121:103565

    Article  Google Scholar 

  • Linnen LR (1998) Depth of emplacement, fluid provenance and metallogeny in granitic terranes: a comparison of western Thailand with other tin belts. Min Dep 33:461–476

    Article  CAS  Google Scholar 

  • Liu Y, Hu Z, Gao S, Günther D, Xu J, Gao C, Chen H (2008) In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem Geol 257:34–43

    Article  CAS  Google Scholar 

  • Mao JW, Xiong BK, Liu J, Pirajno F, Cheng YB, Ye HS, Song SW, Dai P (2017) Molybdenite Re/Os dating, zircon U-Pb age and geochemistry of granitoids in the Yangchuling porphyry W–Mo deposit (Jiangnan tungsten ore belt), China: Implications for petrogenesis, mineralization and geodynamic setting. Lithos 286–287:35–52

    Article  Google Scholar 

  • Mao JW, Ouyang HG, Song SW, Santosh M, Yuan SD, Zhou ZH, Zheng W, Liu H, Liu P, Cheng YB, Chen MH (2019) Geology and metallogeny of tungsten and tin deposits in China. Soc Econ Geol Special Publ 22:411–482

    Google Scholar 

  • Meinert LD, Dipple GM, Nicolescu S (2005) World skarn deposits. Econ Geol 100:299–336

    Google Scholar 

  • Michaud JA-S, Pichavant M (2020) Magmatic fractionation and the magmatic-hydrothermal transition in rare metal granites: Evidence from Argemela (Central Portugal). Geochim Cosmochim Acta 289:130–157

    Article  CAS  Google Scholar 

  • Newberry RJ, Swanson SE (1986) Scheelite skarn granitoids: An evaluation of the roles of magmatic source and process. Ore Geol Rev 1:57–81

    Article  CAS  Google Scholar 

  • Newberry RJ (1998) W-and Sn-skarn deposits: a 1998 status report. Miner Assoc Can Short Course 26:289–335

    CAS  Google Scholar 

  • Pan DP, Wang D, Wang XL (2017) Petrogenesis of granites in Shimensi in northwestern Jiangxi Province and its implications for tungsten deposits. Geology in China 44:118–135 ((in Chinese with English abstract))

    CAS  Google Scholar 

  • Pan XF, Hou ZQ, Zhao M, Li Y, Ouyang YP, Wei J, Yang YS (2020) Fluid inclusion and stable isotope constraints on the genesis of the world-class Zhuxi W(Cu) skarn deposit in South China. J Asian Earth Sci 190:104192

    Article  Google Scholar 

  • Patiño Douce AE, Johnston AD (1991) Phase equilibria and melt productivity in the pelitic system: implications for the origin of peraluminous granitoids and aluminous granulites. Contrib Mineral Petrol 107:202–218

    Article  Google Scholar 

  • Pitcairn IK, Teagle DAH, Craw D, Olivo GR, Kerrich R, Brewer TS (2006) Sources of metals and fluids in orogenic gold deposits: Insights from the Otago and Alpine Schists, New Zealand. Econ Geol 101:1525–1546

    Article  CAS  Google Scholar 

  • Putirka K (2016) Amphibole thermometers and barometers for igneous systems and some implications for eruption mechanisms of felsic magmas at arc volcanoes. Am Miner 101:841–858

    Article  Google Scholar 

  • Rasmussen KL, Falck H, Elongo V, Reimink J, Luo Y, Pearson DG, Ootes L, Creaser RA, Lecumberri-Sanchez P (2023) The source of tungsten-associated magmas in the northern Canadian Cordillera and implications for the basement. Geology 51:657–662

    Article  CAS  Google Scholar 

  • Robb L (2005) Introduction to ore-forming processes. John Wiley & Sons, 1–373

  • Romer RL, Heinrich W, Schröder-Smeibidl B, Meixner A, Fischer C-O, Schulz C (2005) Elemental dispersion and stable isotope fractionation during reactive fluid-flow and fluid immiscibility in the Bufa del Diente aureole, NE-Mexico: evidence from radiographies and Li, B, Sr, Nd, and Pb isotope systematics. Contrib Mineral Petrol 149:400–429

    Article  CAS  Google Scholar 

  • Romer RL, Kroner U (2015) Sediment and weathering control on the distribution of Paleozoic magmatic tin-tungsten mineralization. Min Dep 50:327–338

    Article  CAS  Google Scholar 

  • Romer RL, Kroner U (2016) Phanerozoic tin and tungsten mineralization—Tectonic controls on the distribution of enriched protoliths and heat sources for crustal melting. Gondwana Res 31:60–95

    Article  CAS  Google Scholar 

  • Romer RL, Förster H-J, Glodny J (2022a) Role of fractional crystallization, fluid-melt separation, and alteration on the Li and B isotopic composition of a highly evolved composite granite pluton: The case of the Eibenstock granite, Erzgebirge. Germany Lithos 422–423:106722

    Article  Google Scholar 

  • Romer RL, Kroner U, Schmidt C, Legler C (2022b) Mobilization of tin during continental subduction-accretion processes. Geology 50:1361–1365

    Article  CAS  Google Scholar 

  • Sato K (2012) Sedimentary crust and metallogeny of granitoid affinity: Implications from the geotectonic histories of the Circum-Japan Sea Region, central Andes and southeastern Australia. Resour Geol 62:329–351

    Article  CAS  Google Scholar 

  • Scaillet B, Holtz F, Pichavant M (2016) Experimental constraints on the formation of silicic magmas. Elements 12:109–114

    Article  CAS  Google Scholar 

  • Schmidt C (2018) Formation of hydrothermal tin deposits: Raman spectroscopic evidence for an important role of aqueous Sn (IV) species. Geochim Cosmochim Acta 220:499–511

    Article  CAS  Google Scholar 

  • Schmidt C, Romer RL, Wohlgemuth-Ueberwasser CC, Appelt O (2020) Partitioning of Sn and W between granitic melt and aqueous fluid. Ore Geol Rev 117:103263

    Article  Google Scholar 

  • Scott KM (1988) Phyllosilicate and rutile compositions as indicators of Sn specialization in some southeastern Australian granites. Min Dep 23:159–165

    Article  CAS  Google Scholar 

  • Song S, Mao J, Xie G, Chen L, Santosh M, Chen G, Rao J, Ouyang Y (2019) In situ LA-ICP-MS U-Pb geochronology and trace element analysis of hydrothermal titanite from the giant Zhuxi W (Cu) skarn deposit, South China. Min Dep 54:569–590

    Article  CAS  Google Scholar 

  • Song S, Mao J, Xie G, Jian W, Chen G, Rao J, Ouyang Y (2021a) Petrogenesis of scheelite-bearing albitite as an indicator for the formation of a world-class scheelite skarn deposit: A case study of the Zhuxi tungsten deposit. Econ Geol 116:91–121

    Article  Google Scholar 

  • Song S, Mao J, Xie G, Lehmann B, Jian W, Wang X (2021b) The world-class mid-Mesozoic Jiangnan tungsten belt, South China: Coeval large reduced and small oxidized tungsten systems controlled by different magmatic petrogeneses. Ore Geol Rev 139:104543

    Article  Google Scholar 

  • Song S, Mao J, Yuan S, Jian W (2022a) Decoupling of Sn and W mineralization in a highly fractionated reduced granitic magma province: a case study from the Youjiang basin and Jiangnan tungsten belt. Min Dep 57:1251–1267

    Article  CAS  Google Scholar 

  • Song S, Mao J, Xie G, Su Q, Jian W, Ouyang Y (2022b) Deciphering deep-seated, highly fractionated, and reduced granitic magma systems associated with world-class scheelite skarn ores: A case study of the Zhuxi deposit. South China Ore Geol Rev 149:105084

    Article  Google Scholar 

  • Song SW, Mao JW, Zhu YF, Yao ZY, Chen GH, Rao JF, Ouyang YP (2018a) Partial-melting of fertile metasedimentary rocks controlling the ore formation in the Jiangnan porphyry-skarn tungsten belt, south China: A case study at the giant Zhuxi W-Cu skarn deposit. Lithos 304–307:180–199

    Article  Google Scholar 

  • Song SW, Mao JW, Xie GQ, Yao ZY, Chen GH, Rao JF, Ouyang YP (2018b) The formation of the world-class Zhuxi scheelite skarn deposit: Implications from the petrogenesis of scheelite-bearing anorthosite. Lithos 312–313:153–170

    Article  Google Scholar 

  • Song S, Mao J, Romer RL, Jian W (2023a) The petrogenesis of the Yangchuling porphyry W-Mo deposit, South China, an oxidized tungsten systems. Contrib Mineral Petrol 178:39

    Article  CAS  Google Scholar 

  • Song S, Mao J, Zhang Z, Jian W, Chen L, Ouyang Y (2023b) Lamprophyre magmatism triggering the formation of the Zhuxi granites related to the world-largest scheelite skarn deposit in South China. Lithos 444–445:107106

    Article  Google Scholar 

  • Su Q, Mao J, Wu S, Zhang Z, Xu S (2018) Geochronology and geochemistry of the granitoids and ore – forming age in the Xiaoyao tungsten polymetallic skarn deposit in the Jiangnan Massif tungsten belt, China: Implications for their petrogenesis, geodynamic setting, and mineralization. Lithos 296–299:365–381

    Article  Google Scholar 

  • Su XY (2014) Geology, geochemistry of Zhuxi tungsten copper deposit in Jingdezheng, Jiangxi Province. Master thesis, China University of Geosciences (Beijing) p:50–57 (in Chinese with English abstract)

  • Sun K, Chen B (2017) Trace elements and Sr-Nd isotopes of scheelite: Implications for the W-Cu-Mo polymetallic mineralization of the Shimensi deposit, South China. Am Mineral 102:1114–1128

    Google Scholar 

  • Sun SS, McDonough WS (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345

    Article  Google Scholar 

  • Wang RC, Xie L, Chen J, Yu A, Wang L, Lu J, Zhu J (2013) Tin-carrier minerals in metaluminous granites of the western Nanling Range (southern China): Constraints on processes of tin mineralization in oxidized granites. J Asian Earth Sci 74:361–372

    Article  Google Scholar 

  • Williams-Jones AE, Samson IM, Ault KM, Gagnon JE, Fryer BJ (2010) The Genesis of Distal Zinc Skarns: Evidence from the Mochito Deposit, Honduras. Econ Geol 105:1411–1440

    Article  Google Scholar 

  • Wolf M, Romer RL, Franz L, López-Moro FJ (2018) Tin in granitic melts: The role of melting temperature and protolith composition. Lithos 310–311:20–30

    Article  Google Scholar 

  • Wood SA, Samson IM (2000) The hydrothermal geochemistry of tungsten in granitoid environments: I. Relative solubilities of ferberite and scheelite as a function of T, P, pH, and mNaCl. Econ Geol 95:143–182

    Article  CAS  Google Scholar 

  • Wu S, Sun W, Wang X (2019) A new model for porphyry W mineralization in a world-class tungsten metallogenic belt. Ore Geol Rev 107:501–512

    Article  Google Scholar 

  • Xu R, Romer RL, Glodny J (2021) External fluids cause alteration and metal redistribution in the granite-hosted Tangziwa Sn–Cu deposit, Gejiu district. China Lithos 382–383:105937

    Article  Google Scholar 

  • Yardley BWD, Valley JW (1997) The petrologic case for a dry lower crust. J Geophys Res 102:12173–12185

    Article  CAS  Google Scholar 

  • Yang XM (2017) Estimation of crystallization pressure of granite intrusions. Lithos 286–287:324–329

    Article  Google Scholar 

  • Yin Q, Xiang X, Yu Z, Yang X, Wang T, Zhong B, Tan R, Liao J, Zhu Y (2020) Genesis of S-type granites in the Pengshan Sn-polymetallic ore field, Northern Jiangxi Province and its implications. Acta Geol Sin (english Edition) 94:1860–1873

    Article  CAS  Google Scholar 

  • Yu Q, Chen G, Kang C (2018) Study of metallogenic chronology, mineralogy and ore-forming process of the superlarge tungsten deposits in Zhuxi. Jiangxi Province Geol J China Univ 24:872–895 ((in Chinese with English abstract))

    CAS  Google Scholar 

  • Yuan S, Williams-Jones AE, Romer RL, Zhao P, Mao J (2019) Protolith-related thermal controls on the decoupling of Sn and W in Sn-W metallogenic provinces: Insights from the Nanling region, China. Econ Geol 114:1005–1012

    Article  Google Scholar 

  • Zhao P, Yuan S, Williams-Jones AE, Romer RL, Yan C, Song S, Mao J (2022a) Temporal Separation of W and Sn Mineralization by Temperature-Controlled Incongruent Melting of a Single Protolith: Evidence from the Wangxianling Area, Nanling Region, South China. Econ Geol 117:667–682

    Article  Google Scholar 

  • Zhao P, Chu X, Williams-Jones AE, Mao J, Yuan S (2022b) The role of phyllosilicate partial melting in segregating tungsten and tin deposits in W-Sn metallogenic provinces. Geology 50:121–125

    Article  CAS  Google Scholar 

  • Zhao Q, Zhai D, Hong J, Mathur R, Wang H, Zhang H, Ouyang Y, Liu J (2023) Scheelite U-Pb geochronology and trace element geochemistry fingerprint W mineralization in the giant Zhuxi W deposit, South China. Am Mineral 108:1781–1793

    Article  Google Scholar 

  • Zhang W, Jiang S, Ouyang Y, Zhang D (2020) Geochronology and textural and compositional complexity of apatite from the mineralization-related granites in the world-class Zhuxi W-Cu skarn deposit: A record of magma evolution and W enrichment in the magmatic system. Ore Geol Rev:103885

  • Zhang XN, Pan JY, Lehmann B, Li JX, Yin S, Ouyang YP, Wu B, Fu JL, Zhang Y, Sun Y, Wan JJ, Liu T (2023) Diagnostic REE patterns of magmatic and hydrothermal apatite in the Zhuxi tungsten skarn deposit. China J Geochem Explor 252:107271

    Article  CAS  Google Scholar 

  • Zong K, Klemd R, Yuan Y, He Z, Guo J, Shi X, Liu Y, Hu Z, Zhang Z (2017) The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB). Precambr Res 290:32–48

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Editor-in-Chief Karen D. Kelley, Associate Editor Matthieu Harlaux, and two anonymous reviewers for constructive comments and insightful suggestions that helped to improve the manuscript. We thank Prof. Zhenyu Chen and Dr. Xiaodan Chen for assistance with EPMA analysis and Dr. Yilun Jin and Mr. Zheng Liu for assistance with the LA-ICP-MS trace element analyses of minerals. We greatly appreciate the help of Prof. Zhigang Kong and Mr. Tao Xie during the field investigations.

Funding

This research was jointly supported by the National Natural Science Foundation of China (42272081, 41820104010, 41902096) and the Fundamental Research Funds for the Central Universities (2652020024).

National Natural Science Foundation of China,42272081,Shiwei Song,41820104010,Jingwen Mao,41902096,Shiwei Song,Fundamental Research Funds for the

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiwei Song or Jingwen Mao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Editorial handling: M. Harlaux

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 415 KB)

Supplementary file2 (DOCX 2934 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S., Mao, J., Romer, R.L. et al. Hosts of Sn in reduced deep-seated W skarn systems: A case study on the world-class scheelite skarn deposit, Zhuxi, South China. Miner Deposita (2024). https://doi.org/10.1007/s00126-024-01271-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00126-024-01271-6

Keywords

Navigation