Skip to main content

Advertisement

Log in

Temperature and oxygen state of kimberlite magma from the North China Craton and their implication for diamond survival

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The grade and morphological character of kimberlite-hosted diamonds were compared to crystallization temperature (T) and oxygen fugacity (fO2) estimated from groundmass spinels in six kimberlite pipes in the North China Craton (NCC). Crystallization temperatures calculated at an assumed pressure of 1 GPa are in the range of 1037–1395 °C, with a mean of 1182 °C. At these temperatures, the estimated fO2 varies from 1.2 to 3.1 log units below the nickel-nickel oxide (NNO) buffer. Generally, individual kimberlite pipe shows a small variation of the T (50–100 °C) and fO2 (0.4–0.6 log units), whereas different kimberlite pipes present great changes of T and fO2 which can be up to 300 °C and 2 units respectively. The fO2 of kimberlite magma shows a strong negative correlation with the diamond grade of kimberlite, suggesting that the fO2 plays an important role in diamond resorption, whereas the T shows no relationship with the diamond grade, indicating the T plays no role in diamond resorption. The conditions of kimberlite crystallization (fO2) can be a useful parameter in evaluating diamond survival in diamond exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Available to authorized users

References

  • Agashev AM, Si N, Serov IV, Tolstov AV, Garanin KV, Kovalchuk OE (2018) Geochemistry and origin of the Mirny field kimberlites, Siberia. Mineral Petrol 112:597–608. https://doi.org/10.1007/s00710-018-0617-4

  • Arima M (1998) Experimental study of growth and resorption of diamond in kimberlitic melts at high pressures and temperatures. The 7th International Kimberlite Conference: Extended Abstracts. pp 32-34

  • Ballhaus C, Berry RF, Green DH (1991) High pressure experimental calibration of the olivine-orthopyroxene-spinel oxygen geobarometer: implications for the oxidation state of the upper mantle. Contrib Mineral Petrol 107:27–40. https://doi.org/10.1007/bf00311183

  • Bellis A, Canil D (2007) Ferric iron in CaTiO3 perovskite as an oxygen barometer for kimberlitic magmas I: experimental calibration. J Petrol 48:219–230. https://doi.org/10.1093/petrology/egl054

  • Birkett TC (2008) First-row transition elements, Y and Ga in kimberlite and lamproite: applications to diamond prospectivity and petrogenesis. Can Mineral 46:1269–1282. https://doi.org/10.3749/canmin.46.5.1269

  • Burgess SR, Harte BEN (2004) Tracing lithosphere evolution through the analysis of heterogeneous G9–G10 garnets in peridotite xenoliths, II: REE Chemistry. J Petrol 45:609–633. https://doi.org/10.1093/petrology/egg095

  • Carmody L, Taylor LA, Thaisen KG, Tychkov N, Bodnar RJ, Sobolev NV, Pokhilenko LN, Pokhilenko NP (2014) Ilmenite as a diamond indicator mineral in the Siberian craton: a tool to predict diamond potential. Econ Geol 109:775–783. https://doi.org/10.2113/econgeo.109.3.775

  • Coldebella B, Azzone R, Chmyz L, Ruberti E, Svisero DP (2020) Oxygen fugacity of Alto Paranaíba kimberlites and diamond instability: Três Ranchos IV and Limeira I intrusions. Brazilian J Geol 50:1–15. https://doi.org/10.1590/2317-4889202020190087

  • Cull F, Meyer H (1986) Oxidation of diamond at high temperature and 1 atm total pressure with controlled oxygen fugacity. The 4th International Kimberlite Conference: Extended Abstracts. pp 377-379

  • Dalton H, Giuliani A, O' Brien H, Phillips D, Hergt J (2020) The role of lithospheric heterogeneity on the composition of kimberlite magmas from a single field: the case of Kaavi-Kuopio, Finland. Lithos 354-355:354–355. https://doi.org/10.1016/j.lithos.2019.105333

  • Dawson JB, Stephens WE (1975) Statistical classification of garnets from kimberlite and associated xenoliths. J Geol 83:589–607. https://doi.org/10.1086/628143

  • Dobbs P, Duncan D, Hu S, Shee S, Colgan E, Brown M, Smith C, Allsopp H (1991) The geology of the Mengyin kimberlites, Shandong, China

  • Droop G (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Mineral Mag 51:431–435. https://doi.org/10.1180/minmag.1987.051.361.10

  • Evans T, Phaal C (1961) The kinetics of the diamond-oxygen reaction. Conference on Carbon. pp 147-153

  • Fedortchouk Y (2015) Diamond resorption features as a new method for examining conditions of kimberlite emplacement. Contrib Mineral Petrol 170:36. https://doi.org/10.1007/s00410-015-1190-z

  • Fedortchouk Y (2019) A new approach to understanding diamond surface features based on a review of experimental and natural diamond studies. Earth Sci Rev 193:45–65. https://doi.org/10.1016/j.earscirev.2019.02.013

  • Fedortchouk Y, Canil D (2004) Intensive variables in kimberlite magmas, Lac de Gras, Canada and implications for diamond survival. J Petrol 45:1725–1745. https://doi.org/10.1093/petrology/egh031

  • Fedortchouk Y, Canil D, Carlson JA (2005) Dissolution forms in Lac de Gras diamonds and their relationship to the temperature and redox state of kimberlite magma. Contrib Mineral Petrol 150:54–69. https://doi.org/10.1007/s00410-005-0003-1

  • Fedortchouk Y, Canil D, Semenets E (2007) Mechanisms of diamond oxidation and their bearing on the fluid composition in kimberlite magmas. Am Mineral 92:1200–1212. https://doi.org/10.2138/am.2007.2416

  • Fedortchouk Y, Chinn IL, Kopylova MG (2017) Three styles of diamond resorption in a single kimberlite: effects of volcanic degassing and assimilation. Geology 45:871–874. https://doi.org/10.1130/G39066.1

  • Giuliani A, Pearson DG (2019) Kimberlites: from deep earth to diamond mines. Elements 15:377–380. https://doi.org/10.2138/gselements.15.6.377

  • Giuliani A, Phillips D, Kamenetsky VS, Goemann K (2016) Constraints on kimberlite ascent mechanisms revealed by phlogopite compositions in kimberlites and mantle xenoliths. Lithos 240-243:189–201. https://doi.org/10.1016/j.lithos.2015.11.013

  • Giuliani A, Soltys A, Phillips D, Kamenetsky VS, Maas R, Goemann K, Woodhead JD, Drysdale RN, Griffin WL (2017) The final stages of kimberlite petrogenesis: petrography, mineral chemistry, melt inclusions and Sr-C-O isotope geochemistry of the Bultfontein kimberlite (Kimberley, South Africa). Chem Geol 455:342–356. https://doi.org/10.1016/j.chemgeo.2016.10.011

  • Giuliani A, Pearson DG, Soltys A, Dalton H, Phillips D, Foley SF, Lim E, Goemann K, Griffin WL, Mitchell RH (2020) Kimberlite genesis from a common carbonate-rich primary melt modified by lithospheric mantle assimilation. Sci Adv 6:eaaz0424. https://doi.org/10.1126/sciadv.aaz0424

  • Griffin W, Ryan C (1995) Trace elements in indicator minerals: area selection and target evaluation in diamond exploration. J Geochem Explor 53:311–337. https://doi.org/10.1016/0375-6742(94)00015-4

  • Grütter HS, Gurney JJ, Menzies AH, Winter F (2004) An updated classification scheme for mantle-derived garnet, for use by diamond explorers. Lithos 77:841–857. https://doi.org/10.1016/j.lithos.2004.04.012

  • Gurney JJ (1984) A correlation between garnets and diamonds in kimberlites. Kimberlite occurrence and origin: a basis for conceptual models in exploration 8:143-166. Univ Western Australia: South Perth, Australia 8:143–166

  • Gurney JJ, Zweistra P (1995) The interpretation of the major element compositions of mantle minerals in diamond exploration. J Geochem Explor 53:293–309. https://doi.org/10.1016/0375-6742(94)00021-3

  • Gurney JJ, Hildebrand PR, Carlson JA, Fedortchouk Y, Dyck DR (2004) The morphological characteristics of diamonds from the Ekati property, Northwest Territories, Canada. Lithos 77:21–38. https://doi.org/10.1016/j.lithos.2004.04.033

  • Gurney JJ, Helmstaedt HH, Le Roex AP, Nowicki TE, Richardson SH, Westerlund KJ (2005) Diamonds: crustal distribution and formation processes in time and space and an integrated deposit model. Econ Geol 100:143–177. https://doi.org/10.5382/AV100.07

  • Haggerty SE (1975) The chemistry and genesis of opaque minerals in kimberlites. Phys Chem Earth 9:295–307. https://doi.org/10.1016/B978-0-08-018017-5.50027-4

  • Haggerty SE (1986) Diamond genesis in a multiply-constrained model. Nature 320:34–38. https://doi.org/10.1038/320034a0

  • Hamilton R, Rock NMS (1990) Geochemistry, mineralogy and petrology of a new find of ultramafic lamprophyres from Buljah Pool, Nabberu Basin, Yilgam Craton, Western Australia. Lithos 24:275–290. https://doi.org/10.1016/0024-4937(89)90048-0

  • Hardman MF, Pearson DG, Stachel T, Sweeney RJ (2018) Statistical approaches to the discrimination of crust-and mantle-derived low-Cr garnet–Major-element-based methods and their application in diamond exploration. J Geochem Explor 186:24–35. https://doi.org/10.1016/j.gexplo.2017.11.012

  • Harris J, Vance E (1974) Studies of the reaction between diamond and heated kimberlite. Contrib Mineral Petrol 47:237–244. https://doi.org/10.1007/BF00390148

  • Holland T, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16:309–343. https://doi.org/10.1111/j.1525-1314.1998.00140.x

  • Howarth GH, Barry PH, Pernet-Fisher JF, Baziotis IP, Pokhilenko NP, Pokhilenko LN, Bodnar RJ, Taylor LA, Agashev AM (2014) Superplume metasomatism: evidence from Siberian mantle xenoliths. Lithos 184-187:209–224. https://doi.org/10.1016/j.lithos.2013.09.006

  • Irvine T (1965) Chromian spinel as a petrogenetic indicator: part 1. Theory. Canadian J Earth Sci 2:648–672. https://doi.org/10.1139/e65-046

  • Khokhryakov AF, Pal’Yanov YN (2007) The evolution of diamond morphology in the process of dissolution: experimental data. Am Mineral 92:909–917. https://doi.org/10.2138/am.2007.2342

  • Kjarsgaard BA, Januszczak N, Stiefenhofer J (2019) Diamond exploration and resource evaluation of kimberlites. Elements 15:411–416. https://doi.org/10.2138/gselements.15.6.411

  • Kozai Y, Arima M (2003) Diamond dissolution in kimberlite and lamproite melts at deep crustal conditions. The 8th International Kimberlite Conference: Extended Abstracts.

  • Kozai Y, Arima M (2005) Experimental study on diamond dissolution in kimberlitic and lamproitic melts at 1300–1420 C and 1 GPa with controlled oxygen partial pressure. Am Mineral 90:1759–1766. https://doi.org/10.2138/am.2005.1862

  • Le Roex AP, Bell DR, Davis P (2003) Petrogenesis of group I kimberlites from Kimberley, South Africa: evidence from bulk-rock geochemistry. J Petrol 44:2261–2286. https://doi.org/10.1093/petrology/egg077

  • Li QL, Wu FY, Li XH, Qiu ZL, Liu Y, Yang YH, Tang GQ (2011) Precisely dating Paleozoic kimberlites in the North China Craton and Hf isotopic constraints on the evolution of the subcontinental lithospheric mantle. Lithos 126:127–134. https://doi.org/10.1016/j.lithos.2011.07.001

  • Liu DY, Nutman AP, Compston W, Wu JS, Shen QH (1992) Remnants of ≥ 3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology 20:339–342. https://doi.org/10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2

  • Liu C, Gc Z, Sun M, Zhang J, He Y, Cq Y, Wu F, Yang J (2011) U-Pb and Hf isotopic study of detrital zircons from the Hutuo group in the Trans-North China Orogen and tectonic implications. Gondwana Res 20:106–121. https://doi.org/10.1016/j.gr.2010.11.016

  • Lu FX, Zheng JP (1996) Characteristics of Paleozoic lithospheric mantle and deep processes in the North China Platform In: Chi JS, Lu FX (eds) Kimberlites and characteristics of Paleozoic lithospheric mantle beneath North China platform. Science Press Beijing, pp 215-274.

  • Mendelssohn M, Milledge H (1995) Morphological characteristics of diamond populations in relation to temperature-dependent growth and dissolution rates. Int Geol Rev 37:285–312. https://doi.org/10.1080/00206819509465405

  • Meng QR, Zhang GW (1999) Timing of collision of the North and South China blocks: Controversy and reconciliation. Geology 27:123–126. https://doi.org/10.1130/0091-7613(1999)027<0123:TOCOTN>2.3.CO;2

  • Meyer HOA (1985) Genesis of diamond: a mantle saga. Am Mineral 70:344–355

  • Mitchell RH (1986) Kimberlites: mineralogy, geochemistry and petrology. Plenum, New York

  • Mitchell RH (1995) Kimberlites and orangeites kimberlites, orangeites, and related rocks. Plenum Press, New York, pp 1–90

  • Mitchell RH (1997) Kimberlites, orangeites, lamproites, melilitites, and minettes: a petrographic atlas. Almaz Press, Thunder Bay

  • Mitchell R, Clarke D (1976) Oxide and sulphide mineralogy of the Peuyuk kimberlite, Somerset Island, NWT, Canada. Contrib Mineral Petrol 56:157–172

  • Mitchell RH, Giuliani A, O’Brien H (2019) What is a kimberlite? Petrology and mineralogy of hypabyssal kimberlites. Elements 15:381–386. https://doi.org/10.2138/gselements.15.6.381

  • Naidoo P, Stiefenhofer J, Field M, Dobbe R (2004) Recent advances in the geology of Koffiefontein Mine, Free State Province, South Africa. Lithos 76:161–182. https://doi.org/10.1016/j.lithos.2004.04.032

  • Nixon PH (1995) A review of mantle xenoliths and their role in diamond exploration. J Geodyn 20:305–329. https://doi.org/10.1016/0264-3707(95)00025-5

  • Nowicki TE, Moore RO, Gurney JJ, Baumgartner MC (2007) Diamonds and associated heavy minerals in kimberlite: a review of key concepts and applications. In: Mange MA, Wright DT (eds) . Elsevier, Developments in Sedimentology, pp 1235–1267. https://doi.org/10.1016/S0070-4571(07)58046-5

  • O' Neill HSC, Wall V (1987) The olivine—orthopyroxene—spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the Earth' s Upper Mantle. J Petrol 28:1169–1191. https://doi.org/10.1093/petrology/28.6.1169

  • Pal' yanov YN, Khokhryakov A, Borzdov YM, Sokol A (1995) Diamond morphology in growth and dissolution processes. The 6th International Kimberlite Conference: Extended Abstracts. pp 415-417.

  • Pasteris JD (1980) Opaque oxide phase of the De Beers pipr kimberlite (Kimberley, South Africa) and their petrologic significance. Ph.D. thesis, Yale University, New Haven, CT, 463 pp

  • Pasteris JD (1983) Spinel zonation in the De Beers kimberlite, South Africa: possible role of phlogopite. Can Mineral 21:41–58

  • Robinson DN (1979) Surface textures and other features of diamonds. University of Cape Town

  • Robinson D, Scott J, Van Niekerk A, Anderson V (1989) The sequence of events reflected in the diamonds of some southern African kimberlites. Kimberlites Relat Rocks 2:990–1000

  • Roeder PL, Schulze DJ (2008) Crystallization of groundmass spinel in kimberlite. J Petrol 49:1473–1495. https://doi.org/10.1093/petrology/egn034

  • Schulze DJ (2001) Origins of chromian and aluminous spinel macrocrysts from kimberlites in southern Africa. Can Mineral 39:361–376. https://doi.org/10.2113/gscanmin.39.2.361

  • Sengor AMC, Natalin BA, Burtman VS (1993) Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia. Nature 364:299–307. https://doi.org/10.1038/364299a0

  • Shee SR, Bristow JW, Bell DR, Smith CB, Allsopp HL, Shee PB (1989) The petrology of kimberlites, related rocks and associated mantle xenoliths from the Kuruman province, South Africa. In: Ross J et al (eds) Kimberlites and related rocks: their composition, occurrence, origin and emplacement. Blackwell Scientific Publications, Sydney, pp 60–82

  • Shirey SB, Cartigny P, Frost DJ, Keshav S, Nestola F, Nimis P, Pearson DG, Sobolev NV, Walter MJ (2013) Diamonds and the geology of Mantle carbon. In: Hazen RM, Jones AP, Baross JA (eds) Carbon in Earth. Mineralogical Soc Amer, Chantilly, pp 355–421. https://doi.org/10.1515/9781501508318

  • Soltys A, Giuliani A, Phillips D (2018) Crystallisation sequence and magma evolution of the De Beers dyke (Kimberley, South Africa). Mineral Petrol 112:503–518. https://doi.org/10.1007/s00710-018-0588-5

  • Song B, Nutman AP, Liu D, Wu J (1996) 3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. Precambrian Res 78:79–94. https://doi.org/10.1016/0301-9268(95)00070-4

  • Sonin V, Pokhilenko L, Pokhilenko N, Fedorov I (2000) Diamond oxidation rate as related to oxygen fugacity. Geol Ore Depos 42:496–502

    Google Scholar 

  • Sonin V, Afanas’ ev V, Zhimulev E, Chepurov A (2002) Genetic aspects of the diamond morphology. Geol Ore Depos 44:291–299

    Google Scholar 

  • Stachel T, Harris JW (2008) The origin of cratonic diamonds — constraints from mineral inclusions. Ore Geol Rev 34:5–32. https://doi.org/10.1016/j.oregeorev.2007.05.002

  • Talukdar D, Chalapathi Rao NV (2015) Diamond prospectivity of Mesoproterozoic kimberlites from the Wajrakarur field, southern India: perovskite oxybarometry and bulk-rock transition element geochemistry constraints. J Indian Geophys Union 19:175–181

    Google Scholar 

  • Tompkins LA, Meyer SP, Han Z, Hu S, Armstrong R., Tayer WR (1999) Petrology and geochemistry of kimberlites from Shandong and Liaoning Provinces, China, in: Gurney JJ, Gurney JL, Pascoe MD, Richardson SH (Ed.), Proceedings of 7th International Kimberlite Conference. 2:872-887

  • Tovey M, Giuliani A, Phillips D, Moss S (2020) Controls on the explosive emplacement of diamondiferous kimberlites: new insights from hypabyssal and pyroclastic units in the Diavik mine, Canada. Lithos 360-361:105410. https://doi.org/10.1016/j.lithos.2020.105410

  • van Straaten BI, Kopylova MG, Russell J, Webb KJ, Smith BHS (2008) Discrimination of diamond resource and non-resource domains in the Victor North pyroclastic kimberlite, Canada. J Volcanol Geotherm Res 174:128–138. https://doi.org/10.1016/j.jvolgeores.2007.12.033

  • Vasilenko VB, Zinchuk NN, Krasavchikov VO, Kuznetsova LG, Khlestov VV, Volkova NI (2002) Diamond potential estimation based on kimberlite major element chemistry. J Geochem Explor 76:93–112. https://doi.org/10.1016/S0375-6742(02)00219-4

  • Woolley AR, Bergman SC, Edgar AD, Le Bas MJ, Mitchell RH, Rock NM, Scott Smith B (1996) Classification of lamprophyres, lamproites, kimberlites, and the kalsilitic, melilitic, and leucitic rocks. Can Mineral 34:175–186

    Google Scholar 

  • Wyatt BA, Baumgartner M, Anckar E, Grutter H (2004) Compositional classification of “kimberlitic” and “non-kimberlitic” ilmenite. Lithos 77:819–840. https://doi.org/10.1016/j.lithos.2004.04.025

  • Yang YH, Wu FY, Wilde SA, Liu XM, Zhang YB, Xie LW, Yang JH (2009) In situ perovskite Sr–Nd isotopic constraints on the petrogenesis of the Ordovician Mengyin kimberlites in the North China Craton. Chem Geol 264:24–42. https://doi.org/10.1016/j.chemgeo.2009.02.011

  • Yin ZW, Lu FX, Chen MH, Xu HY (2005) Ages and environments of formation of diamonds in Mengyin County,Shandong Province. Earth Sci Front 12:614–621

    Google Scholar 

  • Zhang P, Qiang (2006) Origin of kimberlitic pipes in Shandong Province. China University of Geosciences (Beijing), Beijing

  • Zhang H, Yang Y (2007) Emplacement age and Sr-Nd-Hf isotopic characteristics of the diamondiferous kimberlites from the eastern North China Craton. Acta Petrol Sin 23:285–294

    Google Scholar 

  • Zhang HF, Zhou MF, Sun M, Zhou XH (2010) The origin of Mengyin and Fuxian diamondiferous kimberlites from the North China Craton: Implication for Palaeozoic subducted oceanic slab–mantle interaction. J Asian Earth Sci 37:425–437. https://doi.org/10.1016/j.jseaes.2009.10.006

  • Zhao DG (1998) Kimberlite, diamond and mantle xenolith from Northwest Territories, Canada and North China. University of Michigan, Michigan

  • Zhao G, Zhai M (2013) Lithotectonic elements of Precambrian basement in the North China Craton: review and tectonic implications. Gondwana Res 23:1207–1240. https://doi.org/10.1016/j.gr.2012.08.016

  • Zhao GC, Wilde SA, Cawood PA, Sun M (2002) Shrimp U-Pb zircon ages of the fuping complex: implications for late archean to paleoproterozoic accretion and assembly of the North China Craton. Am J Sci 302:191–226. https://doi.org/10.2475/ajs.302.3.191

  • Zhao GC, Sun M, Wilde SA, Li SZ (2005) Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Res 136:177–202. https://doi.org/10.1016/j.precamres.2004.10.002

  • Zhao D, Zhang Y, Essene EJ (2015) Electron probe microanalysis and microscopy: principles and applications in characterization of mineral inclusions in chromite from diamond deposit. Ore Geol Rev 65:733–748. https://doi.org/10.1016/j.oregeorev.2014.09.020

  • Zhu RZ, Ni P, Ding JY, Wang DZ, Ju Y, Kang N, Wang GG (2017) Petrography, chemical composition, and Raman spectra of chrome spinel: constraints on the diamond potential of the No. 30 pipe kimberlite in Wafangdian, North China Craton. Ore Geol Rev 91:896–905. https://doi.org/10.1016/j.oregeorev.2017.08.015

  • Zhu RZ, Ni P, Ding JY, Wang GG (2019a) Geochemistry of magmatic and xenocrystic spinel in the no.30 kimberlite pipe (Liaoning Province, North China Craton): Constraints on Diamond Potential. Minerals 9:382

    Article  Google Scholar 

  • Zhu RZ, Ni P, Ding JY, Wang GG, Fan MS, Li SN (2019b) Metasomatic processes in the lithospheric mantle beneath the no. 30 kimberlite (Wafangdian Region, North China Craton). Can Mineral 57:499–517

Download references

Acknowledgments

We are grateful for Ning Kang, Su-Ning Li, Tang Bao, An-Dong Zhu, Bao Hang, and Li-Li Chen for the help during fieldwork. We would like to thank Ji-Hao Zhu for the assistance with measurements of major elements of spinel. We appreciate Ning Kang for providing the morphological data of diamonds in kimberlites from Wafangdian area. We appreciate the Editor Bernd Lehmann, AE Marco Fiorentini, and reviewer Dr. Andrea Giuliani very much for their positive and constructive comments. Thanks to the Key Laboratory of Submarine Geosciences in Second Institute of Oceanography of the State Oceanic Administration for their assistance the experiment.

Code availability

Not applicable

Funding

This research was funded by the Ministry of Land and Resources of the PRC (Grant No. 201404025) and the program B for Outstanding PhD candidate of Nanjing University.

Author information

Authors and Affiliations

Authors

Contributions

R. Z. Z., P. N., G. G. W., and J. Y. D. did the field work; R. Z. Z. analyzed results of all the experiments; R. Z. Z. and P.N. wrote the paper; R. Z. Z., P. N., G. G. W., and J. Y. D. revised the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Pei Ni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Editorial handling: M. Fiorentini

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(XLSX 87 kb)

Supplementary figure 1.

Three spinel projections of oxidized spinel prism (A-C) and Backscatter electron (BSE) images for groundmass spinels from the Shengli 1 kimberlite pipe. (PNG 478 kb)

High Resolution Image (EPS 1354 kb)

Supplementary figure 2.

Three spinel projections of oxidized spinel prism (A-C) and Backscatter electron (BSE) images for groundmass spinels from the L30 kimberlite pipe. (PNG 465 kb)

High Resolution Image (EPS 1294 kb)

Supplementary figure 3.

Three spinel projections of oxidized spinel prism (A-C) and Backscatter electron (BSE) images for groundmass spinels from the Xy6 kimberlite pipe. (PNG 496 kb)

High Resolution Image (EPS 1577 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Rz., Ni, P., Wang, Gg. et al. Temperature and oxygen state of kimberlite magma from the North China Craton and their implication for diamond survival. Miner Deposita 57, 301–318 (2022). https://doi.org/10.1007/s00126-021-01057-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-021-01057-0

Keywords

Navigation