Skip to main content
Log in

Chromitites of the Kraka ophiolite (South Urals, Russia): geological, mineralogical and structural features

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The paper describes disseminated tabular, podiform massive, and transitional chromitite deposits from a mantle section of the Kraka ophiolite massif, South Urals, Russia. The chromitite is hosted by dunite with no correlation between their size and quality and the size of the dunite bodies. Thick dunite bodies mostly host disseminated fine-grained banded chromitite; massive ores are composed of coarse-grained chromitite typically with a thin dunite envelope. The chromitite and host ultramafic rocks exhibit plastic deformation of silicates and chromite, which is expressed in microstructural features, preferred orientation of rock-forming olivine, and folding of the chromitite bodies. The ultramafic rocks are also characterized by deformation-induced textures leading to the formation of the small-size chromite grains on structural defects of plastically deformed rock-forming olivine and orthopyroxene. The formation of dunite bodies and associated chromitite is related to the localization of deformation of rising mantle flows under decompression conditions. Dunite was the most rheologically weak zone exhibiting a focused solid state flow and effective separation of mineral phases (olivine and chromite). The higher amount of the latter in dunite is a result of deformation-induced breakdown of enstatite and removal of trace elements from olivine. The structural features of massive chromitite aggregates indicate that they are a product of concentration and aggregation of grains under the influence of tectonic stresses at high temperatures and pressures, similar to pressure sintering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmed Z (1984) Stratigraphic and textural variations in the chromite composition of the ophiolitic Sakhakot-Qila complex, Pakistan. Econ Geol 79:1334–1359

    Article  Google Scholar 

  • Anderson DL (1989) Theory of the Earth. Blackwell scientific publication, Boston, Oxford, London, Edinburgh, Melburn

    Google Scholar 

  • Arai S, Akizawa N (2014) Precipitation and dissolution of chromite by hydrothermal solutions in the Oman ophiolite: new behavior of Cr and chromite. Am Mineral 99:28–34

    Article  Google Scholar 

  • Arai S, Miura M (2016) Formation and modification of chromitites in the mantle. Lithos 264:277–295

    Article  Google Scholar 

  • Ballhaus C (1998) Origin of the podiform chromite deposits by magma mingling. Earth Planet Sci Lett 156:185–193

    Article  Google Scholar 

  • Barnes S, Roeder P (2001) The range of spinel compositions in terrestrial mafic and ultramafic rocks. J Petrol 42:2279–2302. https://doi.org/10.1093/petrology/42.12.2279

    Article  Google Scholar 

  • Borisova AY, Ceuleneer G, Kamenetsky VS, Arai S, Béjina F, Abily B, Bindeman IN, Polvé M, De Parseval P, Aigouy T, Pokrovski GS (2012) A new view on the petrogenesis of the Oman ophiolite chromitites from microanalyses of chromite-hosted inclusions. J Petrol 53:2411–2440

    Article  Google Scholar 

  • Bunin KP, Baranov AA (1970) Metallography. Metallurgiya, Moscow (in Russian)

    Google Scholar 

  • Carter NL (1976) Steady state flow of rocks. Rev Geophys Space Phys 14:301–360

    Article  Google Scholar 

  • Cassard D, Nicolas A, Rabinowitch M, Moutte J, Leblanc M, Prinzhoffer A (1981) Structural classification of chromite pods in Southern New Caledonia. Econ Geol 76:805–831

    Article  Google Scholar 

  • Chernyshov AI (2001) Ultramafic rocks (plastic flow, structural and petrostructural heterogeneity). Charodey, Tomsk (in Russian)

    Google Scholar 

  • Coccomazi G, Grieco G, Tartarotti P, Bussolesi M, Zaccarini F, Crispini L, Oman Drilling Project Science Team (2020) The formation of dunite channels within harzburgite in the Wadi Tayin Massif, Oman Ophiolite: insights from compositional variability of Cr-Spinel and olivine in Holes BA1B and BA3A, Oman Drilling Project. Minerals 10:167. https://doi.org/10.3390/min10020167

    Article  Google Scholar 

  • Dickey JS (1975) A hypothesis of origin for podiform chromite deposits. Geochim Cosmochim Acta 39:1061–1075

    Article  Google Scholar 

  • Dodd RT (1973) Minor element abundances in olivines of the Sharps (H3) chondrite. Contrib Mineral Petrol 42:156–167

    Article  Google Scholar 

  • El Dien HG, Arai S, Doucet L-S, Li Z-X, Kil Y, Fougerouse D, Reddy SM, Saxey DW, Hamdy M (2019) Cr-spinel records metasomatism not petrogenesis of mantle rocks. Nat Commun 10:5103. https://doi.org/10.1038/s41467-019-13117-1

    Article  Google Scholar 

  • Fedoseev VB (2016) Stratification of two-phase monodisperse system in a laminar planar flow. J Exp Theor Phys 149(4):1057–1067. https://doi.org/10.1134/S1063776116040142

    Article  Google Scholar 

  • Franz L, Wirth R (2000) Spinel inclusions in olivine of peridotite xenoliths from TUBAF seamount (Bismarck Archipelago/Papua New Guinea): evidence for the thermal and tectonic evolution of the oceanic lithosphere. Contrib Mineral Petrol 140:283–295

    Article  Google Scholar 

  • Ghosh B, Ray J, Morishita T (2014) Grain-scale plastic deformation of chromite from podiform chromitite of the Naga-Manipur ophiolite belt, India: implication to mantle dynamics. Ore Geol Rev 56:199–208. https://doi.org/10.1016/j.oregeorev.2013.09.001

    Article  Google Scholar 

  • Ghosh B, Misra S, Morishita T (2017) Plastic deformation and post-deformation annealing in chromite: Mechanisms and implications. Am Mineral 102:216–226

    Article  Google Scholar 

  • Goncharenko AI (1989) Deformation and petrostructural evolution of Alpine-type ultramafic rocks. Tomsk University Publishing, Tomsk (in Russian)

    Google Scholar 

  • Gonzalez-Jimenez JM, Proenza JA, Gervilla F, Melgarejo JC, Blanco-Moreno JA, Ruiz-Sanchez R, Griffin WL (2011) High-Cr and high-Al chromitites from the Sagua de Tanamo district, Mayari-Cristal ophiolitic massif (eastern Cuba): constrains on their origin from mineralogy and geochemistry of chromian spinel and platinum-group-elements. Lithos 125:101–121. https://doi.org/10.1016/j.lithos.2011.01.016

    Article  Google Scholar 

  • Gonzalez-Jimenez JM, Griffin WL, Proenza A, Gervilla F, O'Reilly SY, Akbulut M, Pearson NJ, Arai S (2014) Chromitites in ophiolites: how, where, when, why? Part II The crystallisation of chromitites. Lithos 189:148–158. https://doi.org/10.1016/j.lithos.2013.09.008

    Article  Google Scholar 

  • Gorelik SS (1978) Recrystallization of metals and alloys. Metallurgiya, Moscow (in Russian)

    Google Scholar 

  • Greenbaum D (1977) The chromitiferous rocks of the Troodos ophiolite complex, Cyprus. Econ Geol 72:1175–1194

    Article  Google Scholar 

  • Hock M, Friedrich G (1985) Structural features of ophiolitic chromitites in the Zambales Range, Luzon, Philippines. Mineral Deposita 20:290–301

    Article  Google Scholar 

  • Hock M, Friedrich G, Plueger WL, Wichowski A (1986) Refractory- and metallurgical-type chromite ores, Zambales Ophiolite, Luzon, Philippines. Mineral Deposita 21:190–199

    Article  Google Scholar 

  • Jochum KP, Willbold M, Raczek I, Stoll B, Herwig K (2005) Chemical characterisation of the USGS Reference Glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS. Geostand Geoanal Res 29(3):285–302. https://doi.org/10.1111/j.1751-908X.2005.tb00901.x

    Article  Google Scholar 

  • Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA (2011) Determination of reference values for NIST SRM 610–617 glasses following ISO guidelines. Geostand Geoanal Res 35(4):397–429. https://doi.org/10.1111/j.1751-908X.2011.00120.x

    Article  Google Scholar 

  • Johan Z, Martin RF, Ettler V (2017) Fluids are bound to be involved in the formation of ophiolitic chromite deposits. Eur J Mineral 29:543–555

    Article  Google Scholar 

  • Johnson C (2012) Podiform chromite at Voskhod, Kazakhstan. Cardiff University, Dissertation

    Google Scholar 

  • Jung H (2017) Crystal preferred orientations of olivine, orthopyroxene, serpentine, chlorite, and amphibole, and implications for seismic anisotropy in subduction zones: a review. Geosci J 21(6):985–1011. https://doi.org/10.1007/s12303-017-0045-1

    Article  Google Scholar 

  • Kapsiotis A, Rassios AE, Uysal I, Grieco G, Akmaz RM, Saka S, Bussolesi M (2018) Compositional fingerprints of chromian spinel from the refractory chrome ores of Metalleion, Othris (Greece): implications for metallogeny and deformation of chromitites within a “hot” oceanic fault zone. J Geochem Explor 185:14–32. https://doi.org/10.1016/j.gexplo.2017.11.003

    Article  Google Scholar 

  • Karato S-I (2008) Deformation of Earth materials. Cambridge University Press, An introduction to the rheology of solid Earth, 463 p

    Book  Google Scholar 

  • Kazantseva TT (1987) Allochthonous structures and an origin of the Uralian crust. Nauka, Moscow (in Russian)

    Google Scholar 

  • Kelemen PB, Dick HJB, Quick JE (1992) Formation of harzburgite by pervasive melt/rock reaction in the upper mantle. Nature 358:635–641

    Article  Google Scholar 

  • Kelemen PВ, Shimizu N, Salters VJM (1995) Extraction of mid-ocean-ridge basalt from the upwelling mantle by focused flow of melt in dunite channels. Nature 375:747–753

    Article  Google Scholar 

  • Kelemen PВ, Hirth G, Shimizu N, Spiegelman M, Dick HJB (1997) A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Philos Trans R Soc Lond Ser A 355:283–318

    Article  Google Scholar 

  • Kiseleva ON, Airiyants EV, Belyanin DK, Zhmodik SM (2020) Podiform chromitites and PGE mineralization in the Ulan-Sar’dag ophiolite (East Sayan, Russia). Minerals 10:141. https://doi.org/10.3390/min10020141

    Article  Google Scholar 

  • Kohlstedt DL, Goetze C, Durham WB, van der Sande JB (1976) A new technique for decorating dislocations in olivine. Science 191:1045–1046

    Article  Google Scholar 

  • Lago BL, Rabinowicz M, Nicolas A (1982) Podiform chromite ore bodies: a genetic model. J Petrol 23:103–125

    Article  Google Scholar 

  • Leblanc M, Ceuleneer G (1992) Chromite crystallization in a multicellular magma flow: evidence from a chromitite dike in the Oman ophiolite. Lithos 27:231–257

    Article  Google Scholar 

  • Leblanc M, Violette J-F (1983) Distribution of aluminium-rich and chromium-rich chromite pods in ophiolite peridotites. Econ Geol 78:293–301

    Article  Google Scholar 

  • Matveev S, Ballhaus C (2002) Role of water in the origin of podiform chromitite deposits. Earth Planet Sci Lett 203:235–243. https://doi.org/10.1016/S0012-821X(02)00860-9

    Article  Google Scholar 

  • McLaren AC, Etheridge MA (1976) A transmission electron microscope study of naturally deformed orthopyroxene. I. Slip mechanisms. Contrib Mineral Petrol 57:163–177

    Article  Google Scholar 

  • Melcher F, Grum W, Simon G, Thalhammer TV, Stumpfl EF (1997) Petrogenesis of the ophiolitic giant chromite deposits of Kempirsai, Kazakhstan: a study of solid and fluid inclusions in chromite. J Petrol 38:1419–1458

    Article  Google Scholar 

  • Morishita T, Andal ES, Arai S, Ishida Y (2006) Podiform chromitites in the lherzolite-dominant mantle section of the Isabela ophiolite, the Philippines. Island Arc 15:84–101. https://doi.org/10.1111/j.1440-1738.2006.00511.x

    Article  Google Scholar 

  • Nicolas A, Bouchez JL, Boudier F, Mercier JC (1971) Textures, structures and fabrics due to solid state flow in some European lherzolites. Tectonophysics 12:55–86

    Article  Google Scholar 

  • Novikov II (1986) Theory of thermal processing of metals. Metallurgiya, Moskow (in Russian)

    Google Scholar 

  • Ozawa K (1989) Stress-induced Al–Cr zoning of spinel in deformed peridotites. Nature 338:141–144

    Article  Google Scholar 

  • Poirier J-P (1985) Creep of crystals. High-temperature deformation processes in metals, ceramics and minerals. Cambridge University Press. London

  • Puchkov VN (1997) Structure and geodynamics of the Uralian orogen. In Orogeny Through Time. Published by The Geological Society London. Ed. J.-P. Burg and M. Ford. P.201–236.

  • Puchkov VN (2002) Paleozoic evolution of the East European continental margin involved into the Urals. Mountain Building in the Uralides: Pangea to the Present. AGU Geophysics. Monogr. Ser. 132:9–32.

  • Pushkarev EV, Kamenetsky VS, Morozova AV, Khiller VV, Glavatskykh SP, Rodemann T (2015) Ontogeny of ore Cr-spinel and composition of inclusions as indicators of the pneumatolytic–hydrothermal origin of PGM-bearing chromitites from Kondyor massif, the Aldan Shield. Geol Ore Depos 57:352–380

    Article  Google Scholar 

  • Ringwood AE (1975) Composition and structure of the Earth’s mantle. McGraw-Hill, New York

    Google Scholar 

  • Rost F (1959) Probleme ultrabasischer Gesteine und ihrer Lagerstatten. Freiberger Forschungshefte, Berlin

    Google Scholar 

  • Satsukawa T, Piazolo S, González-Jiménez J-M, Colás V, Griffin WL, O'Reilly SY, Gervilla F, Fanlo I, Kerestedjian TN (2015) Fluid-present deformation aids chemical modification of chromite: Insights from chromites from Golyamo Kamenyane, SE Bulgaria. Lithos 228–229:78–89. https://doi.org/10.1016/j.lithos.2015.04.020

    Article  Google Scholar 

  • Saveliev DE, Artemyev DA (2021) Geochemical features of plastically deformed olivine from ophiolite peridotites and dunites of Kraka massifs (the Southern Urals). Zapiski RMO 150(1) (in press) (in Russian)

  • Saveliev DE, Blinov IA (2015) Syndeformation chrome spinel exsolutions in plastically deformed olivine aggregates (Kraka ophiolite, South Urals). Vestnik Permskogo Universiteta. Geologiya 4(29):45–69 (in Russian). doi: 10.17072/psu.geol.29.44

  • Saveliev DE, Blinov IA (2017) Compositional variations of chrome spinels in ore-bearing zones of the Kraka ophiolite and origin of chromitite. Vestnik Permskogo universiteta. Geologiya 16(2):130–156. DOI: 10.17072/psu.geol.16.2.130

  • Saveliev DE, Fedoseev VB (2011) Segregation mechanism of formation of chromitites in ultramafic rocks of fold belts. Rudy Metally 5:35–42 (in Russian)

    Google Scholar 

  • Saveliev DE, Fedoseev VB (2014) Plastic flow and rheomorphic differentiation of mantle ultramaflc rocks. Vestnik Permskogo Universiteta. Geologiya 4(25):22-41 (in Russian) doi: 10.17072/psu.geol.25.22

  • Saveliev DE, Fedoseev VB (2019) Solid-state redistribution of mineral particles in the upwelling mantle flow as a mechanism of chromite concentration in the ophiolite ultramafic rocks (by the example of Kraka ophiolite, the Southern Urals). Georesources 21(1):31–46. https://doi.org/10.18599/grs.2019.1.2-10

    Article  Google Scholar 

  • Saveliev DE, Snachev VI, Savelieva EN, Bazhin EA (2008) Geology, petrogeochemistry, and chromite content of gabbro-ultramafic massifs of the South Urals. DizaynPoligrafServis, Ufa (in Russian)

    Google Scholar 

  • Saveliev DE, Puchkov VN, Sergeev SN, Musabirov II (2017) Deformation-induced decomposition of enstatite in mantle peridotite and its role in partial melting and chromite ore formation. Dokl Earth Sci 476:1058–1061

    Article  Google Scholar 

  • Savelieva GN (1987) Gabbro-ultramafic complexes of the Uralian ophiolites and their analogs in the present-day oceanic crust. Nauka, Moscow (in Russian)

    Google Scholar 

  • Senchenko GS (1976) Fold structures of the South Urals. Nauka, Moscow (in Russian)

    Google Scholar 

  • Shcherbakov SA (1990) Plastic deformations of ultramafic rock of the Uralian ophiolite association. Nauka, Moscow (in Russian)

    Google Scholar 

  • Shiryaev PB, Vakhrusheva NV (2017) Chemical zoning of spinels and olivines from chromitites and the enclosing ultramafites of the Rai-Iz massif, Tsentralnoe deposit (the Polar Urals). News of the Ural State Mining University, 4:29–35. DOI 10.21440/2307-2091-2017-4-29-35

  • Shiryaev PB, Vakhrusheva NV (2018) The redox state of chromitites from the Yambotyvissky area (Voikar-Syninsky massif, Polar Urals). News Ural State Min Univ 4(52):33–40. https://doi.org/10.21440/2307-2091-2018-4-33-40

    Article  Google Scholar 

  • Skrotzki W (1994) Defect structure and deformation mechanisms in naturally deformed augite and enstatite. Tectonophysics 229:43–68

    Article  Google Scholar 

  • Spiegelman M, Kelemen PB, Aharonov E (2001) Causes and consequences of flox organization during melt transport: the reaction infiltration instability in compactible media. J Geophys Res 106:2061–2077. https://doi.org/10.1029/2000JB900240

    Article  Google Scholar 

  • Spray JG (1988) Generation and crystallization of an amphibolite shear melt: an investigation using radial friction welding apparatus. Contrib Mineral Petrol 99:464–475

    Article  Google Scholar 

  • Spray JG (1992) A physical basis for the frictional melting of some rock-forming minerals. Tectonophysics 204:205–221

    Article  Google Scholar 

  • Stoll WC (1958) Geology and petrology of the Masinloc chromite deposit, Zambales, Luzon, Philippine islands. Bull Geol Soc Am 89:410–448

    Google Scholar 

  • Stünitz H (1998) Syndeformational recrystallization ± dynamic or compositionally induced? Contrib Mineral Petrol 131:219–236

    Article  Google Scholar 

  • Suzuki AM, Yasuda A, Ozawa K (2008) Cr and Al diffusion in chromite spinel: experimental determination and its implication for diffusion creep. Phys Chem Miner 35:433–445

    Article  Google Scholar 

  • Thayer TP (1964) Principal features and origin of podiform chromite deposits, and some observations on the Guleman-Soridag District, Turkey. Econ Geol 59:1497–1524

    Article  Google Scholar 

  • Van Duysen JC, Doukhan N, Doukhan JC (1985) Transmission electron micro-scope study of dislocations in orthopyroxene (Mg, Fe)2 Si2O6. Phys Chem Miner 12:39–44

    Article  Google Scholar 

  • White JC, White SH (1981) The structure of grain boundaries in tectonites. Tectonophysics 78:613–628

    Article  Google Scholar 

  • Yamamoto J, Kagi H, Kaneoka I, Lai Y, Prikhod'ko VS, Arai S (2002) Fossil pressures of fluid inclusions in mantle xenoliths exhibiting rheology of mantle minerals: implications for the geobarometry of mantle minerals using micro Raman spectroscopy. Earth Planet Sci Lett 198:511–519. https://doi.org/10.1016/S0012-821X(02)00528-9

    Article  Google Scholar 

  • Yamamoto J, Ando J, Kagi H, Inoue T, Yamada A, Yamazaki D, Irifune T (2008) In situ strength measurements on natural upper-mantle minerals. Phys Chem Miner 35:249–257. https://doi.org/10.1007/s00269-008-0218-6

    Article  Google Scholar 

  • Zagrtdenov NR, Ceuleneer G, Rospabe M, Borisova AY, Toplis M, Benoit M, Abily B (2018) Anatomy of a chromitite dyke in the mantle/crust transition zone of the Oman ophiolite. Lithos 312–313:343–357. https://doi.org/10.1016/j.lithos.2018.05.012

    Article  Google Scholar 

  • Zhang RY, Shu JF, Mao HK, Liou JG (1999) Magnetite lamellae in olivine and clinohumite from Dabie UHP ultramafic rocks, central China. Am Mineral 84:564–569

    Article  Google Scholar 

  • Zhou MF, Robinson PT, Bai WJ (1994) Formation of podiform chromites by melt/rock interaction in the upper mantle. Mineral Deposita 29:98–101

    Article  Google Scholar 

  • Zhou M-F, Robinson PT, Malpas J, Li Z (1996) Podiform chromitites in the Luobusa Ophiolite (Southern Tibet): implications for melt-rock interaction and chromite segregation in the upper mantle. J Petrol 37:3–21

    Article  Google Scholar 

  • Zhou M-F, Robinson PT, Malpas J, Aitchison J, Sun M, Bai WJ, Hu XF, Yang JS (2001) Melt/rock interaction and melt evolution in the Sartohay high-Al chromite deposit of the Dalabute ophiolite (NW China). J Asian Earth Sci 19:519–536

    Article  Google Scholar 

Download references

Acknowledgements

The author is grateful to Z. Vukmanovich, M. Fiorentini, W. Maier, and two anonymous reviewers and Editor-in-Chief Georges Beaudoin for their useful comments; I.A. Blinov (Institute of Mineralogy, SU FRC MB UB RAS, Miass), S.N. Sergeev, and I.I. Musabirov (Institute for Superplasticity of Metals, Ufa) for SEM studies; V.V. Shilovskikh (St. Petersburg State University, St. Petersburg) for EBSD analysis; and D.A. Artemyev (Institute of Mineralogy, SU FRC MB UB RAS, Miass) for LA-ICP-MS studies.

Funding

This work was supported by the Government of the Russian Federation (projects nos. 0252–2017–0014 and 0246–2019–0078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry E. Saveliev.

Additional information

Editorial handling: M. Fiorentini

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 2280 kb)

ESM 2

(XLS 956 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saveliev, D.E. Chromitites of the Kraka ophiolite (South Urals, Russia): geological, mineralogical and structural features. Miner Deposita 56, 1111–1132 (2021). https://doi.org/10.1007/s00126-021-01044-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-021-01044-5

Keywords

Navigation