Geology and genesis of the Shalipayco evaporite-related Mississippi Valley-type Zn–Pb deposit, Central Peru: 3D geological modeling and C–O–S–Sr isotope constraints

Abstract

The Shalipayco Zn–Pb deposit, in central Peru, is composed of several stratabound orebodies, the largest of which are the Resurgidora and Intermedios, contained in carbonate rocks of the Upper Triassic Chambará Formation, Pucará group. Petrography suggests that a single ore-forming episode formed sphalerite and galena within vugs, open spaces, and fractures. Three-dimensional (3D) geological modeling has allowed division of the Chambará Formation into four members (Chambará I, II, III, and IV) that better define lithological controls on sulfide formation. Diagenetic replacement of evaporite minerals with the organic matter (OM) presence likely generated secondary porosity and H2S accumulation by bacterial sulfate reduction (BSR), providing ground preparation for the later Zn–Pb mineralizing event. The least-altered host rocks have C–O isotope compositions of 1.8 ± 0.1‰ (VPDB) and 29.9 ± 2.1‰ (VSMOW), respectively, within the Triassic marine carbonate ranges. Early dolomite contains lighter C–O composition (1.1 ± 0.9 and 23.8 ± 2.9‰, respectively) consistent with OM decomposition during burial diagenesis. Post-mineralization calcite has still lighter C–O composition (− 5.1 and 13.3‰, respectively), suggesting meteoric water that had migrated through organic-rich strata. The strontium isotopes of Mitu group basalts (0.709654–0.719669) indicate it as a possible, but not the unique source of strontium and probably of other metals. Highly negative sulfide sulfur isotope values (− 23.3 to − 6.2‰ (VCDT)) indicate a major component of the ore sulfur derived ultimately from BSR. However, multiple lines of evidence suggest that preexisting H2S underwent thermochemical redox cycling prior to ore formation. The influx of hot metalliferous brines to dolomitized zones containing trapped H2S is the preferred model for ore deposition at Shalipayco.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Anderson GM, Garven G (1987) Sulfate-sulfide-carbonate associations in Mississippi Valley-type lead-zinc deposits. Econ Geol 82:482–488

    Article  Google Scholar 

  2. Baby P, Calderón Y, Hurtado C, Louterbach M, Espurt N, Brusset S, Roddaz M, Brichau S, Eude A, Calvès G (2019) The Peruvian sub-andean foreland basin system: structural overview, geochronologic constraints, and unexplored plays In: Zamora G, McClay KR, Ramos VA (eds) Memoir 117: Petroleum Basins and Hydrocarbon Potential of the Andes of Peru and Bolivia. AAPG Special Volumes, pp 87–116

  3. Badoux V, Moritz R, Fontboté L (2001) The Mississippi Valley-type Zn-Pb deposit of San Vicente, Central Peru: an Andean syntectonic deposit. Mineral deposits at the beginning of the 21th Century Proceed Joint 6th Biennial SGA-SEG Mtg, Krakow, Poland:191–195

  4. Basuki NI, Taylor BE, Spooner ETC (2008) Sulfur isotope evidence for thermochemical reduction of dissolved sulfate in Mississippi Valley-type zinc-lead mineralization, Bongara area, northern Peru. Econ Geol 103:783–799

    Article  Google Scholar 

  5. Baumgartner R, Fontboté L, Vennemann T (2008) Mineral zoning and geochemistry of epithermal polymetallic Zn-Pb-Ag-Cu-Bi mineralization at Cerro de Pasco, Peru. Econ Geol 103:493–537

    Article  Google Scholar 

  6. Beaty DW, Landis GP, Thompson TB (1990) Carbonate-hosted sulfide deposits of the Central Colorado Mineral Belt: introduction, general discussion and summary in: Beaty DW, Landis GP. Thompson TB (eds) Economic Geology Monograph 7:1–18

    Google Scholar 

  7. Benavides-Cáceres V (1999) Orogenic evolution of the Peruvian Andes: the Andean cycle. Geology and ore deposits of the Central Andes 7:61–107

    Google Scholar 

  8. Benavides V (1968) Saline deposits of South America International Conference on Saline Deposits. pp 249-290

  9. Bendezú R, Fontboté L, Cosca M (2003) Relative age of Cordilleran base metal lode and replacement deposits, and high sulfidation Au-(Ag) epithermal mineralization in the Colquijirca mining district, central Peru. Mineral Deposita 38:683–694. https://doi.org/10.1007/s00126-003-0358-z

    Article  Google Scholar 

  10. Bendezú R, Fontboté L (2009) Cordilleran epithermal Cu-Zn-Pb-(Au-Ag) mineralization in the Colquijirca district, central Peru: deposit-scale mineralogical patterns. Econ Geol 104:905–944

    Article  Google Scholar 

  11. Bouabdellah M, Castorina F, Bodnar RJ, Banks D, Jébrak M, Prochaska W, Lowry D, Klügel A, Hoernle K (2014) Petroleum migration, fluid mixing, and halokinesis as the main ore-forming processes at the peridiapiric Jbel Tirremi fluorite-barite hydrothermal deposit, northeastern Morocco. Econ Geol 109:1223–1256

    Article  Google Scholar 

  12. Bouabdellah M, Niedermann S, Velasco F (2015) The Touissit-Bou Beker Mississippi Valley-type district of northeastern Morocco: relationships to the Messinian salinity crisis, Late Neogene-Quaternary alkaline magmatism, and buoyancy-driven fluid convection. Econ Geol 110:1455–1484

    Article  Google Scholar 

  13. Bouhlel S, Leach DL, Johnson CA, Marsh E, Salmi-Laouar S, Banks DA (2016) A salt diapir-related Mississippi Valley-type deposit: the Bou Jaber Pb-Zn-Ba-F deposit, Tunisia: fluid inclusion and isotope study. Mineral Deposita 51:749–780

    Article  Google Scholar 

  14. Calderón Y, Baby P, Hurtado C, Brusset S (2017a) Thrust tectonics in the Andean retro-foreland basin of northern Peru: Permian inheritances and petroleum implications. Mar Pet Geol 82:238–250. https://doi.org/10.1016/j.marpetgeo.2017.02.009

    Article  Google Scholar 

  15. Calderón Y, Vela Y, Hurtado C, Bolaños R, Baby P, Eude A, Roddaz M, Brusset S, Calvès G (2017b) Petroleum systems restoration of the Huallaga—Marañon Andean Retroforeland Basin, Peru in: AbuAli MA, Moretti I, Bolås HMN (eds) Memoir 114: Petroleum Systems Analysis—Case Studies. AAPG Special Volumes, pp 95-116

  16. Carothers WW, Kharaka YK (1980) Stable carbon isotopes of HCO3− in oil-field waters—implications for the origin of CO2. Geochim Cosmochim Acta 44:323–332

    Article  Google Scholar 

  17. Catchpole H, Kouzmanov K, Fontboté L, Guillong M, Heinrich CA (2011) Fluid evolution in zoned Cordilleran polymetallic veins—insights from microthermometry and LA-ICP-MS of fluid inclusions. Chem Geol 281:293–304

    Article  Google Scholar 

  18. Catchpole H, Kouzmanov K, Bendezú A, Ovtcharova M, Spikings R, Stein H, Fontboté L (2015a) Timing of porphyry (Cu-Mo) and base metal (Zn-Pb-Ag-Cu) mineralisation in a magmatic-hydrothermal system—Morococha district, Peru. Mineral Deposita 50:895–922

    Article  Google Scholar 

  19. Catchpole H, Kouzmanov K, Putlitz B, Seo JH, Fontboté L (2015b) Zoned base metal mineralization in a porphyry system: origin and evolution of mineralizing fluids in the Morococha District, Peru. Econ Geol 110:39–71. https://doi.org/10.2113/econgeo.110.1.39

    Article  Google Scholar 

  20. Charef A, Sheppard SMF (1987) Pb-Zn mineralization associated with diapirism: fluid inclusion and stable isotope (H, C, O) evidence for the origin and evolution of the fluids at Fedj-El-Adoum, Tunisia. Chem Geol 61:113–134

    Article  Google Scholar 

  21. Claypool GE, Holser WT, Kaplan IR, Sakai H, Zak I (1980) The age curves of sulfur and oxygen isotopes in marine sulfate and their mutual interpretation. Chem Geol 28:199–260

    Article  Google Scholar 

  22. Cowan EJ, Beatson RK, Fright WR, McLennan TJ, Mitchell TJ (2002) Rapid geological modelling Applied Structural Geology for Mineral International Symposium. Kalgoorlie, pp 23–25

  23. Cowan EJ, Beatson RK, Ross HJ, Fright WR, McLennan TJ, Evans TR, Carr JC, Lane RG, Bright DV, Gillman AJ (2003) Practical implicit geological modelling Fifth international mining geology conference. Australian Institute of Mining and Metallurgy Bendigo, Victoria, pp. 89–99

  24. de Oliveira SB, Juliani C, Monteiro LVS (2019a) Mineral characterisation of the non-sulphide Zn mineralisation of the Florida Canyon deposit, Bongará District, Northern Peru. Appl Earth Sci 128:27–36. https://doi.org/10.1080/25726838.2018.1556033

    Article  Google Scholar 

  25. de Oliveira SB, Leach DL, Juliani C, Monteiro LVS, Johnson CA (2019b) The Zn–Pb mineralization of Florida Canyon, an evaporite-related Mississippi Valley-type deposit in the Bongará District, Northern Peru. Econ Geol 114:1621–1647. https://doi.org/10.5382/econgeo.4690

    Article  Google Scholar 

  26. de Oliveira SB, Saldanha AA (2019) Application of mineral norm calculation in the resource evaluation of the sulphide and non-sulphide Zn-Pb mineralisation of the Florida Canyon MVT deposit, Peru. Appl Earth Sci 128:96–105. https://doi.org/10.1080/25726838.2019.1619057

    Article  Google Scholar 

  27. de Oliveira SB, Juliani C, Monteiro LVS, Tassinari CCG (2020) Structural control and timing of evaporite-related Mississippi Valley-type Zn–Pb deposits in Pucará Group, Northern Central Peru. J S Am Earth Sci 103:102736

    Article  Google Scholar 

  28. Fontboté L (1990) Stratabound ore deposits in the Pucará basin In: Fontboté L, Amstutz G. C., Cardozo M., Cedillo E, Frutos J (eds) Stratabound Ore Deposits in the Andes. Springer-Verlag, Berlin Heildelberg, pp 253-266

  29. Fontboté L, Gorzawski H (1990) Genesis of the Mississippi Valley-type Zn-Pb deposit of San Vicente, central Peru; geologic and isotopic (Sr, O, C, S, Pb) evidence. Econ Geol 85:1402–1437

    Article  Google Scholar 

  30. Fontboté L, Gunnesch KA, Baumann A (1990) Metal sources in stratabound ore deposits in the Andes (Andean cycle)—lead isotopic constraints in: Fontboté L, Amstutz G. C., Cardozo M., Cedillo E, Frutos J (eds) Stratabound ore deposits in the Andes. Springer-Verlag, Berlin Heildelberg, pp 759-773

  31. Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals. SEPM.199

  32. Gunnesch KA, Baumann A (1984) The Atacocha district, central Peru: some metallogenetic aspects Syngenesis and Epigenesis in the Formation of Mineral Deposits. Springer, pp:448–456

  33. Gunnesch KA, Baumann A, Gunnesch M (1990) Lead isotope variations across the central Peruvian Andes. Econ Geol 85:1384–1401

    Article  Google Scholar 

  34. Hoefs J (1980) Stable isotope geochemistry. Springer, Berlin.437

  35. INGEMMET (1999) Mapa geológico del Perú, Escala 1:1,000,000. Instituto Geológico Minero y Metalúrgico. Lima, Peru

    Google Scholar 

  36. Johnson CA, Stricker CA, Gulbransen CA, Emmons MP (2018) Determination of δ13C, δ15N, or δ34S by isotope-ratio-monitoring mass spectrometry using an elemental analyzer US Geological Survey Techniques and Methods. pp. 20

  37. Kampschulte A, Strauss H (2004) The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chem Geol 204:255–286. https://doi.org/10.1016/j.chemgeo.2003.11.013

    Article  Google Scholar 

  38. Koepnick RB, Denison RE, Burke WH, Hetherington EA, Dahl DA (1990) Construction of the Triassic and Jurassic portion of the Phanerozoic curve of seawater 87Sr/86Sr. Chemical Geology: Isotope Geoscience section 80:327–349

    Google Scholar 

  39. Korte C, Kozur HW, Bruckschen P, Veizer J (2003) Strontium isotope evolution of Late Permian and Triassic seawater. Geochim Cosmochim Acta 67:47–62

    Article  Google Scholar 

  40. Kouzmanov K, Bendezú A, Catchpole H, Ageneau M, Pérez JA, Fontboté L (2008) The Miocene Morococha district, central Peru: Large-scale epithermal polymetallic overprint on multiple intrusion-centered porphyry systems Australasian Institute of Mining and Metallurgy, Pacific Rim Congress. pp 117-121

  41. Leach DL, Sangster DF (1993) Mississippi Valley-type lead-zinc deposits. Geol Assoc Can Spec Pap 40:289–314

    Google Scholar 

  42. Leach DL, Sangster DF, Kelley KD, Large RR, Garven G, Allen CR, Gutzmer J, Walters S (2005) Sediment-hosted Pb-Zn deposits: a global perspective. Econ Geol 100:561–608

    Google Scholar 

  43. Leach DL, Song Y-C, Hou Z-Q (2017) The world-class Jinding Zn–Pb deposit: ore formation in an evaporite dome, Lanping Basin, Yunnan, China. Mineral Deposita 52:281–296

    Article  Google Scholar 

  44. Leach DL, Song Y (2019) Sediment-hosted zinc-lead and copper deposits in China In: Chang Z, Goldfarb R (eds) Mineral deposits of China. pp 325-409

  45. Machel HG (2001) Bacterial and thermochemical sulfate reduction in diagenetic settings—old and new insights. Sediment Geol 140:143–175

    Article  Google Scholar 

  46. Mégard F (1968) Geología del cuadrángulo de Huancayo 25-m-[Boletín A 18] INGEMMET Boletín, Serie A: Carta Geológica Nacional. Servicio de Geología y Minería, Lima, p 123

    Google Scholar 

  47. Mégard F (1984) The Andean orogenic period and its major structures in central and northern Peru. J Geol Soc 141:893–900

    Article  Google Scholar 

  48. Mégard F (1987) Structure and evolution of the Peruvian Andes In: Schaer JP, Rodgers J (eds) The Anatomy of Mountain Ranges. Princeton University, Princeton, New Jersey, pp. 179–210

  49. Megaw PKM, Ruiz J, Titley SR (1988) High-temperature, carbonate-hosted Ag-Pb-Zn (Cu) deposits of northern Mexico. Econ Geol 83:1856–1885

    Article  Google Scholar 

  50. Moritz R, Fontboté L, Spangenberg J, Rosas S, Sharp Z, Fontignie D (1996) Sr, C and O isotope systematics in the Pucará basin, central Peru. Mineral Deposita 31:147–162

    Article  Google Scholar 

  51. Noble DC, Silberman ML, Mégard F, Bowman HP (1978) Comendite (peralkaline rhyolite) and basalt in the Mitu Group, Peru: evidence for Permian-Triassic lithospheric extension in the central Andes. US Geological Survey Journal of Research 6:453–457

    Google Scholar 

  52. Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. Geochemistry of Hydrothermal Ore Deposits (Barnes, HL, ed.), 509-567. John Wiley & Sons Inc., N Y

  53. Ohmoto H (1986) Stable isotope geochemistry of ore deposits. Rev Mineral 16:491–560

    Google Scholar 

  54. Petit JP (1987) Criteria for the sense of movement on fault surfaces in brittle rocks. Journal of Structural Geology 9:597–608. doi: https://doi.org/10.1016/0191-8141(87)90145-3

  55. Reid CJ (2001) Stratigraphy and mineralization of the Bongara MVT zinc-lead district, northern Peru. University of Toronto, Toronto, p 179

    Google Scholar 

  56. Ritterbush KA, Rosas S, Corsetti FA, Bottjer DJ, West AJ (2015) Andean sponges reveal long-term benthic ecosystem shifts following the end-Triassic mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol 420:193–209. https://doi.org/10.1016/j.palaeo.2014.12.002

    Article  Google Scholar 

  57. Rosas S, Fontboté L, Tankard A (2007) Tectonic evolution and paleogeography of the Mesozoic Pucará Basin, central Peru. J S Am Earth Sci 24:1–24

    Article  Google Scholar 

  58. Rottier B, Kouzmanov K, Casanova V, Bouvier A-S, Baumgartner LP, Wälle M, Fontboté L (2018a) Mineralized breccia clasts: a window into hidden porphyry-type mineralization underlying the epithermal polymetallic deposit of Cerro de Pasco (Peru). Mineral Deposita 53:919–946. https://doi.org/10.1007/s00126-017-0786-9

    Article  Google Scholar 

  59. Rottier B, Kouzmanov K, Casanova V, Wälle M, Fontboté L (2018b) Cyclic dilution of magmatic metal-rich hypersaline fluids by magmatic low-salinity fluid: a major process generating the giant epithermal polymetallic deposit of Cerro de Pasco, Peru. Econ Geol 113:825–856. https://doi.org/10.5382/econgeo.2018.4573

    Article  Google Scholar 

  60. Sánchez A (1995) Geología de los cuadrángulos de Bagua Grande, Jumbilla, Lonya Grande, Chachapoyas, Rioja, Leimebamba y Bolívar: hojas 12-g, 12-h, 13-g, 13-h, 13-i, 14-hy 15-h. Instituto Geológico Minero y Metalúrgico Peru

    Google Scholar 

  61. Schaltegger U, Guex J, Bartolini A, Schoene B, Ovtcharova M (2008) Precise U–Pb age constraints for end-Triassic mass extinction, its correlation to volcanism and Hettangian post-extinction recovery. Earth Planet Sci Lett 267:266–275. https://doi.org/10.1016/j.epsl.2007.11.031

    Article  Google Scholar 

  62. Schütfort EG (2001) The genesis of the San Vicente lead zinc rhythmite deposit, Peru: a petrologic, geochemical, and sulfur isotope study. Oregon State University, p 136

  63. Sempere TPA, Cotrina J (2018) An overlooked giant salt basin in Peru 9th INGEPET. Lima, Peru, p 18

    Google Scholar 

  64. Sillitoe RH (2010) Porphyry copper systems*. Econ Geol 105:3–41. https://doi.org/10.2113/gsecongeo.105.1.3

    Article  Google Scholar 

  65. Soler P, Lara MA (1990) Minor and Trace Elements in the Polymetallic Stratabound Ore Deposits of the Central Peruvian Andes. In: Minor and trace elements in the polymetallic stratabound ore deposits of the Central Peruvian Andes in: Fontboté L, Amstutz GC, Cardozo M, Cedillo E, Frutos J (eds) Stratabound ore deposits in the Andes. Springer, Berlin, pp 735–748

    Google Scholar 

  66. Spangenberg J, Fontboté L, Sharp ZD, Hunziker J (1996) Carbon and oxygen isotope study of hydrothermal carbonates in the zinc-lead deposits of the San Vicente district, central Peru: a quantitative modeling on mixing processes and CO2 degassing. Chem Geol 133:289–315

    Article  Google Scholar 

  67. Spangenberg JE, Fontboté L, Macko SA (1999) An evaluation of the inorganic and organic geochemistry of the San Vicente Mississippi Valley-type zinc-lead district, central Peru; implications for ore fluid composition, mixing processes, and sulfate reduction. Econ Geol 94:1067–1092

    Article  Google Scholar 

  68. Spikings R, Reitsma MJ, Boekhout F, Mišković A, Ulianov A, Chiaradia M, Gerdes A, Schaltegger U (2016) Characterisation of Triassic rifting in Peru and implications for the early disassembly of western Pangaea. Gondwana Res 35:124–143. https://doi.org/10.1016/j.gr.2016.02.008

    Article  Google Scholar 

  69. Szekely TS, Grose LT (1972) Stratigraphy of the carbonate, black shale, and phosphate of the Pucará Group (Upper Triassic—Lower Jurassic), Central Andes, Peru. Geol Soc Am Bull 83:407–428

    Article  Google Scholar 

  70. Thompson TB, Beaty DW (1990) Geology and the origin of ore deposits in the Leadville District, Colorado: part II. Oxygen, hydrogen, carbon, sulfur, and lead isotope data and development of a genetic model. Carbonate-hosted sulfide deposits of the Central Colorado mineral belt Econ Geol Monog 8:156–179

    Google Scholar 

  71. Tuanama N (2016) Controles geológicos del manto intermedio y su relación con la génesis del yacimiento tipo Mississippi Valley en Shalipayco, Junín, Perú Facultad De Ingeniería Geológica. Minera Metalúrgica Y Geográfica. Universidad Nacional Mayor San Marcos Lima, Peru, p 158

    Google Scholar 

  72. Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden GAF, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha OG, Strauss H (1999) 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol 161:59–88

    Article  Google Scholar 

  73. Vollgger SA, Cruden AR, Ailleres L, Cowan EJ (2015) Regional dome evolution and its control on ore-grade distribution: insights from 3D implicit modelling of the Navachab gold deposit, Namibia. Ore Geol Rev 69:268–284. https://doi.org/10.1016/j.oregeorev.2015.02.020

    Article  Google Scholar 

  74. Worden RH, Smalley PC (1996) H2S-producing reactions in deep carbonate gas reservoirs: Khuff Formation, Abu Dhabi. Chemical Geology 133:157–171. doi: https://doi.org/10.1016/S0009-2541(96)00074-5

  75. Wotzlaw J-F, Guex J, Bartolini A, Gallet Y, Krystyn L, McRoberts CA, Taylor D, Schoene B, Schaltegger U (2014) Towards accurate numerical calibration of the Late Triassic: High-precision U-Pb geochronology constraints on the duration of the Rhaetian. Geology 42:571–574. https://doi.org/10.1130/G35612.1

    Article  Google Scholar 

  76. Zheng Y-F (1993) Calculation of oxygen isotope fractionation in hydroxyl-bearing silicates. Earth and Planetary Science Letters 120:247-263. doi: https://doi.org/10.1016/0012-821X(93)90243-3

Download references

Acknowledgments

The authors would like to thank all field geologists, including Daniel Hinostroza and Nancy Tuanama for discussions during fieldwork, and Pan American Silver and Nexa Resources for the use of data. We wish also to thank Jim Reynolds for discussions about fluid inclusions and Cayce Gulbransen, for assistance during S isotope analysis. We also would like to thank Editor-in-Chief Georges Beaudoin, Associate Editor Karen Kelly, Richard Moscati, Janet Slate, and the anonymous reviewer for their careful reading of our manuscript and their suggestions and comments, which surely improved the quality of the paper. This paper is part of the first author’s Ph.D. thesis (Instituto de Geociências, Universidade de São Paulo) part of this work was conducted during a visiting scholar period at Colorado School of Mines, sponsored by the Capes Foundation within the Ministério da Educação, Brazil (process 88881.135448/2016-01), that the authors would like to thank. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Saulo B. de Oliveira.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Editorial handling: K. Kelley

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, S.B., Johnson, C.A., Juliani, C. et al. Geology and genesis of the Shalipayco evaporite-related Mississippi Valley-type Zn–Pb deposit, Central Peru: 3D geological modeling and C–O–S–Sr isotope constraints. Miner Deposita (2021). https://doi.org/10.1007/s00126-020-01029-w

Download citation

Keywords

  • Evaporite-related MVT deposits
  • C, O, S, Sr isotopes
  • Pucará group
  • Chambará formation
  • Shalipayco
  • 3D geological modeling