In situ geochemistry and Fe–O isotopic composition of iron oxides from the Pha Lek Fe deposit, northwest Truong Son orogenic belt, Laos: implications for ore-forming processes

Abstract

The Pha Lek Fe-polymetallic deposit in the southwest of the Truong Son orogenic belt records the evolution and metallogenesis of the southeastern Asia Tethys. Debates remain on the roles the Late Triassic volcanism played in the formation of the iron oxides of the deposit. Petrographic and SEM studies led to the recognition of two dominant iron oxides (magnetite and hematite) and three stages of mineralization (pre-ore, syn-ore, and post-ore stages). In situ LA–ICP–MS analyses for trace elements and Fe and O isotopic analyses were applied to understand the origin of the iron oxides. Generally, iron oxide of the syn-ore stage has higher total trace elements than post-ore stage, and magnetite has higher lithophile elements, whereas hematite has higher chalocophile elements. The trace-element abundance in magnetite is most comparable to porphyry-skarn-hydrothermal magnetite, and hematite is more comparable to supergene and secondary, non-magmatic hydrothermal chemistry. All δ56Fe values of the iron-oxide separates are above 0‰ and have an igneous signature, and syn-ore stage magnetite has relatively higher δ56Fe values than the post-ore stage hematite. All δ18O values of the iron-oxide separates are below 1‰ and plot within the non-igneous field, and show a similar decreasing trend from syn-ore stage magnetite to post-ore stage hematite. We propose that the Triassic volcanic activities played a limited role during the mineralization process; the deposit was formed because of the Late Carboniferous–Early Permian, porphyry-skarn-related, magmatic hydrothermal alteration; and the mixing of non-magmatic fluid and/or the supergene weathering caused the wide reprecipitation of Fe oxides. An evolutionary mineralization model related to the low-angle subduction for the deposit is also proposed.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Acosta-Góngora P, Gleeson SA, Samson IM, Ootes L, Corriveau L (2014) Trace element geochemistry of magnetite and its relationship to Cu-Bi-Co-Au-Ag-U-W mineralization in the great bear magmatic zone, NWT. Canada Econ Geol 109:1901–1928

    Article  Google Scholar 

  2. Anber A, Jarzecki A, Spiro T (2005) Theoretical investigation of iron isotope fractionation between Fe (H2O)63+ and Fe(H2O)62+: implications for iron stable isotope geochemistry. Geochim Cosmochim Acta 69:825–837

    Article  Google Scholar 

  3. Bajwah ZU, Seccombe PK, Offler R (1987) Trace element distribution Co: Ni ratios and genesis of the Big Cadia iron-copper deposit, New South Wales, Australia. Mineral Deposita 22:292–300

    Article  Google Scholar 

  4. Balci N, Bullen TD, Witte-Lien K, Shanks WC, Motelica M, Mandernack KW (2006) Iron isotope fractionation during microbially stimulated Fe (II) oxidation and Fe (III) precipitation. Geochim Cosmochim Acta 70:622–639

    Article  Google Scholar 

  5. Beard BL, Johnson CM, Skulan JL, Nealson KH, Cox L, Sun H (2003) Application of Fe isotopes to tracing the geochemical and biological cycling of Fe. Chem Geol 195:87–117

    Article  Google Scholar 

  6. Bilenker LD, VanTongeren JA, Lundstrom CC, Simon AC (2016a) Iron isotopic evolution during fractional crystallization of the uppermost Bushveld Complex layered mafic intrusion. Geochem Geophys Geosyst 18:18–972. https://doi.org/10.1002/2016GC006660

    Article  Google Scholar 

  7. Bilenker LD, Simon AC, Reich M, Lundstrom CC, Gajos N, Bindeman I, Barra F, Munizaga R (2016b) Fe–O stable isotope pairs elucidate a high-temperature origin of Chilean iron oxide-apatite deposits. Geochim Cosmochim Acta 177:94–104

    Article  Google Scholar 

  8. Chen TW, Zhou MF, Gao JF, Hu RZ (2015) Geochemistry of magnetite from Proterozoic Fe-Cu deposits in the Kangdian metallogenic province, SW China. Mineral Deposita 50:795–809

    Article  Google Scholar 

  9. Childress TM, Simon AC, Day WC, Lundstrom CC, Bindeman IN (2016) Iron and oxygen isotope signatures of the pea ridge and pilot knob magnetite-apatite deposits, Southeast Missouri, USA. Econ Geol 111:2033–2044

    Article  Google Scholar 

  10. Chung D, Zhou MF, Gao JF, Chen TW (2015) In-situ LA–ICP-MS trace elemental analyses of magnetite: the late Palaeoproterozoic Sokoman Iron formation in the Labrador Trough, Canada. Ore Geol Rev 65:917–928

    Article  Google Scholar 

  11. Dare SA, Barnes SJ, Beaudoin G (2012) Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: implications for provenance discrimination. Geochim Cosmochim Acta 88:27–50

    Article  Google Scholar 

  12. Dare SA, Barnes SJ, Beaudoin G, Méric J, Boutroy E, Potvin-Doucet C (2014) Trace elements in magnetite as petrogenetic indicators. Mineral Deposita 49:785–796

    Article  Google Scholar 

  13. Dauphas N, John SG, Rouxel O (2017) Iron isotope systematics. Rev Mineral Geochem 82:415–510

    Article  Google Scholar 

  14. Dupuis C, Beaudoin G (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineral Deposita 46:319–335

    Article  Google Scholar 

  15. Faure M, Lepvrier C, Nguyen VV, Vu TV, Lin W, Chen ZC (2014) The South China block-Indochina collision: where, when, and how? J Asia Earth Sci 79:260–274

    Article  Google Scholar 

  16. Günther T, Klemd R, Zhang X, Horn I, Weyer S (2017) In-situ trace element and Fe-isotope studies on magnetite of the volcanic-hosted Zhibo and Chagangnuoer iron ore deposits in the Western Tianshan, NW China. Chem Geol 453:111–127

    Article  Google Scholar 

  17. Hou L, Liu SS, Guo LN, Xiong FH, Li C, Shi MF, Zhang QM, Xu SW, Wu SY (2019a) Geology, geochronology, and Hf isotopic composition of the Pha Lek Fe deposit, northern Laos: implications for early Permian subduction-related skarn Fe mineralization in the Truong Son belt. J Earth Sci 30:109–120

    Article  Google Scholar 

  18. Hou L, Xiong FH, Wang W, Guo LN, Peng HJ, Ni SJ, Zhang QM (2019b) Carboniferous-Triassic felsic igneous rocks and typical mineral deposits in the Truong Son orogenic belt, SE Asia: implications for Paleo-Tethyan tectonic evolution and metallogeny. Ore Geol Rev 112:103036

    Article  Google Scholar 

  19. Hu X, Chen HY, Zhao LD, Han JS, Xia XP (2017) Magnetite geochemistry of the Longqiao and Tieshan Fe–(Cu) deposits in the middle-lower Yangtze River belt: implications for deposit type and ore genesis. Ore Geol Rev 89:822–835

    Article  Google Scholar 

  20. Hyslop EV, Valley JW, Johnson CM, Beard BL (2007) The effects of metamorphism on O and Fe isotope compositions in the Biwabik Iron formation, northern Minnesota. Contrib Mineral Petrol 155:313–328

    Article  Google Scholar 

  21. Johnson CM, Roden EE, Welch SA, Beard BL (2005) Experimental constraints on Fe isotope fractionation during magnetite and Fe carbonate formation coupled to dissimilatory hydrous ferric oxide reduction. Geochim Cosmochim Acta 69:963–993

    Article  Google Scholar 

  22. Jonsson E, Troll VR, Högdahl K, Harris C, Weis F, Nilsson KP, Skelton A (2013) Magmatic origin of giant ‘Kiruna-type’ apatite-iron-oxide ores in Central Sweden. Sci Rep 3:1644

    Article  Google Scholar 

  23. Kamvong T, Khin Z, Meffre S, Maas R, Stein H, Lai C (2014) Adakites in the Truong Son and Loei fold belts, Thailand and Laos: genesis and implications for geodynamics and metallogeny. Gondwana Res 26:165–184

    Article  Google Scholar 

  24. Khin Z, Meffre S, Lai C, Burrett C, Santosh M, Graham I, Manaka T, Salam A, Kamvong T, Cromie P (2014) Tectonics and metallogeny of mainland Southeast Asia – a review and contribution. Gondwana Res 26:5–30

    Article  Google Scholar 

  25. Leprier C, Maluski H, Tich VV, Leyreloup A, Phan TT, Nguyen VV (2004) The Early Triassic Indosinian orogeny in Vietnam (Truong Son Belt and Kontum Massif); implications for the geodynamic evolution of Indochina. Tectonophysics 393:87–118

    Article  Google Scholar 

  26. Li J, Zhu XK, Tang SH (2012) Equilibrium fractionation of Fe isotopes during Fe (III) hydrolysis. Acta Petrol Mineral 31:891–896

    Google Scholar 

  27. Li DF, Chen HY, Hollings P, Zhang L, Sun XM, Zheng Y, Xia XP, Xiao B, Wang CM, Fang J (2018) Trace element geochemistry of magnetite: implications for ore genesis of the Talate skarn Pb-Zn (-Fe) deposit, Altay, NW China. Ore Geol Rev 100:471–482

    Article  Google Scholar 

  28. Manaka T (2014) A study of mineralogical, geochemical and geochronological characteristics and ore genesis in Phuoc Son Gold deposit area, Central Vietnam. Published Ph.D thesis. University of Tasmania, Hobart: 207

  29. Mao HJ (2012) Geology and metallogeny of the Pha Lek deposit in Truong Son Belt, Laos. Published Ph.D thesis. Chengdu University of Technology, Chengdu: 1–104

  30. Nadoll P, Mauk JL, Hayes TS, Koenig AE, Box SE (2012) Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States. Econ Geol 107:1275–1292

    Article  Google Scholar 

  31. Nadoll P, Angerer T, Mauk JL, French D, Walshe J (2014) The chemistry of hydrothermal magnetite: a review. Ore Geol Rev 61:1–32

    Article  Google Scholar 

  32. Nielsen RL, Beard JS (2000) Magnetite–melt HFSE partitioning. Chem Geol 164:21–34

    Article  Google Scholar 

  33. Nielsen RL, Forsythe LM, Gallahan WE, Fisk MR (1994) Major- and trace-element magnetite–melt equilibria. Chem Geol 117:167–191

    Article  Google Scholar 

  34. Qian X, Feng QL, Wang WQ, Wang YJ, Chonglakmani CP, Monjai DC (2015) Arc-like volcanic rocks in NW Laos: geochronological and geochemical constraints and their tectonic implications. J Asian Earth Sci 98:342–357

    Article  Google Scholar 

  35. Shi MF, Lin FC, Fan W, Deng Q, Cong F, Tran MT, Zhu HP, Wang H (2015) Zircon U–Pb ages and geochemistry of granitoids in the Truong Son terrane, Vietnam: tectonic and metallogenic implications. J Asian Earth Sci 101:101–120

    Article  Google Scholar 

  36. Sillitoe RH (2009) Porphyry copper systems. Econ Geol 105:3–41

    Article  Google Scholar 

  37. Sone M, Metchlfe I (2008) Parallel Tethyan sutures in mainland Southeast Asia: new insights for Palaeo-Tethys closure and implications for the Indosinian orogeny. CR Tectonics 340:166–179

    Google Scholar 

  38. Sun J, Zhu XK (2015) Fe isotope geochemistry of earth surface system. Geol Rev 61:1370–1382 (in Chinese with English Abstract)

    Google Scholar 

  39. Sun XM, Lin H, Fu Y, Li DF, Hollings P, Yang TJ, Liu ZR (2017) Trace element geochemistry of magnetite from the giant Beiya goldpolymetallic deposit in Yunnan Province, Southwest China and its implications for the ore forming processes. Ore Geol Rev 91:477–490

    Article  Google Scholar 

  40. Tate NM (2005) Discovery, geology and mineralization of the Phu Kham copper-gold deposit Lao People’s Democratic Republic., Mineral Deposit Research: Meeting the Global Challenge. Springer, Berlin Heidelberg, pp 1077–1080

    Google Scholar 

  41. Toplis MJ, Carroll MR (1995) An experimental study of the influence of oxygen fugacity on Fe–Ti oxide stability, phase relations, and mineral–melt equilibria in ferro-basaltic systems. J Petrol 36:1137–1170

    Article  Google Scholar 

  42. Toplis MJ, Corgne A (2002) An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium. Contrib Mineral Petrol 144:22–37

    Article  Google Scholar 

  43. Troll VR, Weis FA, Jonsson E, Andersson UB, Majidi SA, Högdahl K, Harris C, Millet MA, Chinnasamy SS, Kooijman E, Nilsson KP (2019) Global Fe–O isotope correlation reveals magmatic origin of Kiruna-type apatite-iron-oxide ores. Nat Commun 10:1712. https://doi.org/10.1038/s41467-019-09244-4

    Article  Google Scholar 

  44. Wang Y, Zhu XK (2012) Fe isotope systematics and its implications in ore deposit geology. Acta Petrol Sin 28:3638–3654 (in Chinese with English Abstract)

    Google Scholar 

  45. Wang JL, Lin FC, Zhu HP, Wang H, Shi MF (2013) SHRIMP zircon U-Pb dating of the ore-forming monzogranite from the Phalek iron deposit, Vientiane, Laos and its geological implications. Sediment Geol Tethyan Geol 33(3):87–93 (in Chinese with English Abstract)

    Google Scholar 

  46. Welch S, Beard B, Johnson C, Braterman P (2003) Kenetic and equilibrium Fe isotope fractionation between aqueous Fe (II) and Fe (III). Geochim Cosmochim Acta 67:4231–4250

    Article  Google Scholar 

  47. Zaw K, Meffre S, Lai CK, Burrett C, Santosh M, Graham I, Manaka T, Salam A, Kamvong T, Cromie P (2014) Tectonics and metallogeny of mainland Southeast Asia–a review and contribution. Gondwana Res 26:5–30

    Article  Google Scholar 

  48. Zhao LD, Chen HY, Zhang L, Li DF, Zhang WF, Wang CM, Yang JT, Yan XL (2018) Magnetite geochemistry of the Heijianshan Fe–Cu (–Au) deposit in Eastern Tianshan: Metallogenic implications for submarine volcanic-hosted Fe–Cu deposits in NW China. Ore Geol Rev 100:422–440

    Article  Google Scholar 

  49. Zhou GF, Wu ZB, Gao JH, Fan WY, Wu WX, Liu ZT, Jiao YJ, Yang J, Deng K (2012) Geological characteristics and prospecting target of the Pali Mountain iron deposit in SaiSong-Wen County, Vientiane Province, Laos. Geol China 39(5):1375–1386 (in Chinese with English Abstract)

    Google Scholar 

  50. Zhou ZJ, Tang HS, Chen YJ, Chen ZL (2017) Trace elements ofmagnetite and iron isotopes of the Zankan iron deposit, westernmost Kunlun, China: a case study of seafloor hydrothermal iron deposits. Ore Geol Rev 80:1191–1205

    Article  Google Scholar 

  51. Zhu XK, Guo Y, O’Nions RK, Young ED, Ash RD (2001) Isotopic homogeneity of iron in the early solar nebula. Nature 412:311–313

    Article  Google Scholar 

  52. Zhu HP, Fan WY, Mao HJ, Wu ZB, Gao JH, Liu SS (2014) Geological characteristics and Metallogenesis of the PhaLek iron deposit in Vientiane Province, Laos. J Jilin Univ (Earth Sci Ed) 44(5):1492–1501 (in Chinese with English Abstract)

    Google Scholar 

  53. Zhu B, Zhang HF, Zhao XM, He YS (2016a) Iron isotope fractionation during skarn-type alteration: implications for metal source in the Han-Xing iron skarn deposit. Ore Geol Rev 74:139–150

    Article  Google Scholar 

  54. Zhu XK, Sun J, Wang Y (2016b) Fe isotope geochemistry of magmatic system. Earth Sci Envriron 38:1–10 (in Chinese with English Abstract)

    Google Scholar 

Download references

Acknowledgments

Suggestions of Mark D. Barton of the University of Arizona led to significant improvements in this paper. This manuscript benefited greatly from the editor of the journal, Bernd Lehmann, and the associate editor, Alexandre Raphael Cabral, and two reviewers, Tristan Morgan Childress and an anonymous expert, whose constructive suggestions helped to clarify our purpose and ideas.

Funding

This study was financially supported by the National Geological Survey Foundation of China (No. 121201010000150013 and No. DD20201161) and the National Natural Science Foundation of China (No. 41972077).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Linnan Guo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Editorial handling: A. R. Cabral

Supplementary Information

ESM 1

(XLSX 23 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hou, L., Guo, L., Xu, S. et al. In situ geochemistry and Fe–O isotopic composition of iron oxides from the Pha Lek Fe deposit, northwest Truong Son orogenic belt, Laos: implications for ore-forming processes. Miner Deposita (2020). https://doi.org/10.1007/s00126-020-01028-x

Download citation

Keywords

  • Truong Son orogenic belt
  • Pha Lek deposit
  • Iron oxides
  • Trace element
  • Fe and O isotope
  • Ore forming process