Trace element composition of scheelite in orogenic gold deposits

  • Marjorie SciubaEmail author
  • Georges BeaudoinEmail author
  • Donald Grzela
  • Sheida Makvandi


Scheelite from 25 representative orogenic gold deposits from various geological settings was investigated by EPMA (electron probe micro-analyzer) and LA-ICP-MS (laser ablation-inductively coupled plasma-mass spectrometer) to establish discriminant geochemical features to constrain indicator mineral surveys for gold exploration. Scheelite from orogenic gold deposits displays five REE patterns including a bell-shaped pattern with a (i) positive or (ii) negative Eu anomaly; (iii) a flat pattern with a positive Eu anomaly and, less commonly, (iv) a LREE-enriched pattern, and (v) a HREE-enriched pattern. The REE patterns are interpreted to reflect the source of the auriferous hydrothermal fluids and, perhaps, co-precipitating mineral phases. Scheelite from deposits formed in rocks metamorphosed at upper greenschist to lower amphibolite facies have low contents in REE, Y, and Sr, and high contents in Mn, Nb, Ta, and V, compared to scheelite formed in rocks metamorphosed below the middle greenschist facies. Scheelite from deposits hosted in sedimentary rocks has high Sr, Pb, U, and Th, and low Na, REE, and Y, compared to that hosted in felsic to intermediate rocks. Statistical analysis including elemental plots and multivariate statistics with PLS-DA (partial least square-discriminant analysis) reveal that the metamorphic facies of the host rocks as well as the regional host rock composition exert a strong control on scheelite composition. This is a result of fluid-rock exchange during fluid flow to gold deposition site. PLS-DA and elemental ratio plots show that scheelite from orogenic gold deposits have distinct Sr, Mo, Eu, As, and Sr/Mo, but indistinguishable REE signatures, compared to scheelite from other deposit types.


Scheelite Orogenic gold deposits Trace elements Cathodoluminescence Principal component analysis Partial least square-discriminant analysis 



People and mining companies who collaborated are gratefully thanked: Acacia Mining, AngloGold Ashanti, D. Craw (Otago University), C. Daoust, A. Dziggel (Aachen University), Goldcorp, S. Hagemann (UWA), A. Hellmann (Aachen University), IAMgold, R. Large (University of Tasmania), L. M. Lobato (Universidade Federal de Minas Gerais), N. Maneglia (Université Laval), A. Mueller (UWA), F. Robert (Barrick), Royal Ontario Museum, N. Thébaud (UWA). M. Choquette (Université Laval), D. Savard, and M. Kudrna Prasek (UQAC) are thanked for the technical assistance with EPMA and LA-ICP-MS analyses. Roman Hanes is thanked for his help to elaborate the discussion. We thank the reviewers and Editor B. Lehmann for their insightful comments that help improve our contribution significantly.

Funding information

The research is funded by Agnico Eagle Mines Ltd., the Ministère de l’Énergie et des Ressources Naturelles du Québec and the Natural Sciences and Engineering Research Council.

Supplementary material

126_2019_913_MOESM1_ESM.pdf (182 kb)
ESM 1 (PDF 181 kb)
126_2019_913_MOESM2_ESM.xlsx (157 kb)
ESM 2 (XLSX 157 kb)
126_2019_913_MOESM3_ESM.pdf (3.3 mb)
ESM 3 (PDF 3334 kb)


  1. Aitchison J (1986) The statistical analysis of compositional data. Monographs on Statistics and Applied Probability. London (UK)Google Scholar
  2. Alderton DHM, Pearce JA, Potts PJ (1980) Rare earth element mobility during granite alteration; evidence from Southwest England. Earth Planet Sci Lett 49:149–165CrossRefGoogle Scholar
  3. Anglin CD (1992) Sm-Nd and Sr isotopic studies of scheelite from some superior province gold deposits department of earth sciences. Carleton University, Ottawa, p 219Google Scholar
  4. Anglin CD, Jonasson IR, Franklin J (1996) Sm-Nd dating of scheelite and tourmaline: implications for the genesis of Archean gold deposits, Val d’Or, Canada. Econ Geol 91:1372–1382CrossRefGoogle Scholar
  5. Aumo R, Salonen V-P (1986) Uvarovite and glacial transportation distance as provenance indicators of ore mineralization in the southern part of the Outokumpu district, North Karelia. Finland Prospecting in Areas of Glaciated Terrain. Institution of Mining and Metallurgy, London, pp 17–23Google Scholar
  6. Beaudoin G, Pitre D (2005) Stable isotope geochemistry of the Archean Val-d’Or (Canada) orogenic gold vein field. Mineral Deposita 40:59–75CrossRefGoogle Scholar
  7. Bell K, Anglin CD, Franklin JM (1989) Sm-Nd and Rb-Sr isotope systematics of scheelites: possible implications for the age and genesis of vein-hosted gold deposits. Geology 17:500–509CrossRefGoogle Scholar
  8. Boutroy E, Dare SAS, Beaudoin G, Barnes S-J, Lightfoot PC (2014) Magnetite composition in Ni-Cu-PGE deposits worldwide: application to mineral exploration. J Geochem Explor 145:64–81CrossRefGoogle Scholar
  9. Brugger J, Giere R, Grobety B, Uspensky E (1998) Scheelite-powellite and paraniite-(Y) from the Fe-Mn deposit at Fianel, Eastern Swiss Alps. Am Mineral 83:1100–1110CrossRefGoogle Scholar
  10. Brugger J, Bettiol AA, Costa S, Lahaye Y, Bateman R, Lambert DD, Jamieson DN (2000a) Mapping REE distribution in scheelite using luminescence. Mineral Mag 64:891–903CrossRefGoogle Scholar
  11. Brugger J, Lahaye Y, Costa S, Lambert D, Bateman R (2000b) Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems (Mt. Charlotte and Drysdale gold deposits, Western Australia). Contrib Mineral Petrol 139:251–264CrossRefGoogle Scholar
  12. Brugger J, Maas R, Lahaye Y, McRae C, Ghaderi M, Costa S, Lambert D, Bateman R, Prince K (2002) Origins of Nd–Sr–Pb isotopic variations in single scheelite grains from Archaean gold deposits, Western Australia. Chem Geol 182:203–225CrossRefGoogle Scholar
  13. Brugger J, Etschmann B, Pownceby M, Liu WH, Grundler P, Brewe D (2008) Oxidation state of europium in scheelite: tracking fluid-rock interaction in gold deposits. Chem Geol 257:26–33CrossRefGoogle Scholar
  14. Burt DM (1989) Compositional and phase relations among rare earth elements. Rev Mineral 21:259–307Google Scholar
  15. Cassidy KF, Bennett JM (1993) Gold mineralisation at the Lady Bountiful Mine, Western Australia; an example of a granitoid-hosted Archaean lode gold deposit. Mineral Deposita 28:388–408CrossRefGoogle Scholar
  16. Cave BJ, Pitcairn IK, Craw D, Large RR, Thompson JM, Johnson SC (2016) A metamorphic mineral source for tungsten in the turbidite-hosted orogenic gold deposits of the Otago Schist. New Zealand, Miner Deposita OnlineGoogle Scholar
  17. Condie KC (1993) Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. Chem Geol 104:1–37CrossRefGoogle Scholar
  18. Cottrant J (1981) Cristallochimie et geochimie des terres rares dans la scheelite: application à quelques gisements français. Université Pierre et Marie CurieGoogle Scholar
  19. Darbyshire DPF, Pitfield PEJ, Campbell SDG (1996) Late Archean and Early Proterozoic gold-tungsten mineralization in the Zimbabwe Archean craton: Rb-Sr and Sm-Nd isotope constraints. Geology 24:19–22CrossRefGoogle Scholar
  20. Dare S, Barnes S-J, Beaudoin G, Méric J, Boutroy E, Potvin-Doucet C (2014) Trace elements in magnetite as petrogenetic indicators. Mineral Deposita 49:785–796CrossRefGoogle Scholar
  21. de Iorio M, Ebbels TMD, Stephens DA (2007) Statistical techniques in metabolic profilling. In: Balding DJ, Bishop MJ, Cannings C (eds) Handbook of statistical genetics, 3rd edn. Wiley, Chichester, pp 347–373Google Scholar
  22. Dostal J, Kontak D, Chatterjee A (2009) Trace element geochemistry of scheelite and rutile from metaturbidite-hosted quartz vein gold deposits, Meguma Terrane, Nova Scotia, Canada: genetic implications. Mineral Petrol 97:95–109CrossRefGoogle Scholar
  23. Dupuis C, Beaudoin G (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineral Deposita 46:319–335CrossRefGoogle Scholar
  24. Eichhorn R, Höll R, Jagout E, Schärer U (1997) Dating scheelite stages: a strontium, neodymium, lead approach from the Felhertal tungsten deposit, Central Alps, Austria. Geochim Cosmochim Acta 61:5005–5022CrossRefGoogle Scholar
  25. Eilu PK, Mathison CI, Groves DI, Allardyce WJ (1999) Atlas of alteration assemblages, styles and zoning in orogenic lode-gold deposits in a variety of host rock and metamorphic settings. University of Western Australia, Geology Department and Extension Service, Perth, West. Aust., AustraliaGoogle Scholar
  26. Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueraz G, Barceló-Vidal C (2003) Isometric logratio transformations for compositional data analysis. Math Geol 35:279–300CrossRefGoogle Scholar
  27. Eriksson L, Johansson E, Kettaneh-Wold N, Wold S (2001) Multi- and megavariate data analysis basic principles and applications. UMETRICS, UmeaGoogle Scholar
  28. Fipke CE, Gurney JJ, Moore RO (1995) Diamond exploration techniques emphasizing indicator mineral geochemistry and Canadian examples. GSC Bull 423Google Scholar
  29. Frei R, Nägler TF, Schönberg R, Kramers JD (1998) Re-Os, Sm-Nd, U-Pb, and stepwise lead leaching isotope systematics in shear-zone hosted gold mineralization: genetic tracing and age constraints of crustal hydrothermal activity. Geochim Cosmochim Acta 62:1925–1936CrossRefGoogle Scholar
  30. Fu Y, Sun X, Zhou H, Lin H, Jiang L, Yang T (2017) In-situ LA-ICP-MS trace elements analysis of scheelites from the giant Beiya gold–polymetallic deposit in Yunnan Province, Southwest China and its metallogenic implications. Ore Geol Rev 80:828–837CrossRefGoogle Scholar
  31. Garofalo PS, Fricker MB, Guenther D, Bersani D, Lottici PP (2014) Physical-chemical properties and metal budget of Au-transporting hydrothermal fluids in orogenic deposits. Spec Publ Geol Soc Lond 402:71–102CrossRefGoogle Scholar
  32. Ghaderi M, Palin JM, Campbell IH, Sylvester PJ (1999) Rare earth element systematics in scheelite from hydrothermal gold deposits in the Kalgoorlie-Norseman region, Western Australia. Econ Geol 94:423–437CrossRefGoogle Scholar
  33. Goldfarb RJ, Groves DI (2015) Orogenic gold; common or evolving fluid and metal sources through time. Lithos (Oslo) 233:2–26CrossRefGoogle Scholar
  34. Goldfarb RJ, Baker T, Dube B, Groves DI, Hart CJR, Gosselin P (2005) Distribution, character and genesis of gold deposits in metamorphic terranes In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic geology 100th Anniversary volume. pp 407–450Google Scholar
  35. Graupner T, Niedermann S, Rhede D, Kempe U, Seltmann R, Williams C, Klemd R (2010) Multiple sources for mineralizing fluids in the Charmitan gold(−tungsten) mineralization (Uzbekistan). Mineral Deposita 45:667–682CrossRefGoogle Scholar
  36. Gromet LP, Dymek RF, Haskin LA, Korotev RL (1984) The “North American shale composite”; its compilation, major and trace element characteristics. Geochim Cosmochim Acta 48:2469–2482CrossRefGoogle Scholar
  37. Guo Z, Li J, Xu X, Song Z, Dong X, Tian J, Yang Y, She H, Xiang A, Kang Y (2016) Sm/Nd dating and REE composition of scheelite for the Honghuaerji scheelite deposit, Inner Mongolia, Northeast China. Lithos (Oslo) 261:307–321CrossRefGoogle Scholar
  38. Gurney JJ (1984) A correlation between garnets and diamonds in kimberlites. University of Western AustraliaGoogle Scholar
  39. Hancok MC, Robertson IG, Booth GW (1990) Paddington gold deposits In: Hughes FE (ed) Geology of Australian and Papua New Guinean Mineral Deposits Australasian Institute of Mining and Metallurgy Monograph 14Google Scholar
  40. Hazarika P, Mishra B, Pruseth KL (2016) Scheelite, apatite, calcite and tourmaline compositions from the late Archean Hutti orogenic gold deposit: implications for analogous two stage ore fluids. Ore Geol Rev 72:989–1003CrossRefGoogle Scholar
  41. Helsel DR (2005) Nondetects and data analysis : statistics for censored environmental data. Wiley-Interscience, HobokenGoogle Scholar
  42. Hron K, Templ M, Filzmoser P (2010) Imputation of missing values for compositional data using classical and robust methods. Computational Statistics & Data Analysis 54(12):3095–3107CrossRefGoogle Scholar
  43. Jochum KP, Nohl U, Herwig K, Lammel E, Stoll B, Hofmann AW (2005) GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand Geoanal Res 29:333–338CrossRefGoogle Scholar
  44. Johansson P, Keinänen V, Lehmuspelto P (1986) Geochemical exploration of tungsten in glaciogenic deposits in Soretiapulju, western Finnish Lapland Prospecting in Areas of Glaciated Terrain. Institution of Mining and Metallurgy, London, pp 61–67Google Scholar
  45. Jowitt SM, Cooper K, Squire RJ, Thébaud N, Fisher L, Cas RAF, Pegg I (2014) Geology, mineralogy, and geochemistry of magnetite-associated Au mineralization of the ultramafic–basalt greenstone hosted crusader complex, Agnew Gold Camp, Eastern Yilgarn Craton, Western Australia; a Late Archean intrusion-related Au deposit ? Ore Geol Rev 56:53–72CrossRefGoogle Scholar
  46. Kempe U, Belyatsky B, Krymsky R, Kremenetsky AA, Ivanov PA (2001) Sm-Nd and Sr isotope systematics of scheelite from the giant Au(-W) deposit Muruntau (Uzbekistan): implications for the age and sources of Au mineralization. Mineral Deposita 36:379–392CrossRefGoogle Scholar
  47. Kent AJR, Campbell IH, McCulloch MT (1995) Sm-Nd systematics of hydrothermal scheelite from the Mount Charlotte Mine, Kalgoorlie, Western Australia; an isotopic link between gold mineralization and komatiites. Econ Geol 90:2329–2335CrossRefGoogle Scholar
  48. Kerrich R, Fryer BJ (1978) Archaean precious-metal hydrothermal systems, Dome Mine, Abitibi greenstone belt; II, REE and oxygen isotope relations. Can J Earth Sci 16:440–458CrossRefGoogle Scholar
  49. Kolb J, Sindern S, Kisters AFM, Michael Meyer F, Hoernes S, Schneider J (2005) Timing of Uralian orogenic gold mineralization at Kochkar in the evolution of the East Uralian granite-gneiss terrane. Mineral Deposita 40:473–491CrossRefGoogle Scholar
  50. Lawley CJM, Dubé B, Mercier-Langevin P, Kjarsgaard B, Knight R, Vaillancourt D (2015) Defining and mapping hydrothermal footprints at the BIF-hosted Meliadine gold district, Nunavut, Canada. J Geochem Explor 155:33–55CrossRefGoogle Scholar
  51. Lindmark B (1977) Till-sampling methods used in exploration for scheelite in Kaustinen, Finland Prospecting in Areas of Glaciated Terrain. Helsinki, Institute of Mining and MetallurgyGoogle Scholar
  52. Liu W, Etschmann B, Migdisov A, Boukhalfa H, Testemale D, Mueller H, Hazemann J-L, Brugger J (2017) Revisiting the hydrothermal geochemistry of europium(II/III) in light of new in situ XAS spectroscopy results. Chem Geol 459:61–74CrossRefGoogle Scholar
  53. MacRae CM, Wilson NC, Brugger J (2009) Quantitative cathodoluminescence mapping with application to a kalgoorlie scheelite. Microsc Microanal 15:222–230CrossRefGoogle Scholar
  54. Mao J, Konopelko D, Seltmann R, Lehmann B, Chen W, Wang Y, Eklund O, Usubaliev T (2004) Postcollisional age of the Kumtor gold deposit and timing of Hercynian events in the Tien Shan, Kyrgyzstan. Econ Geol 99:1771–1780CrossRefGoogle Scholar
  55. Makvandi S, Ghasemzadeh-Barvarz M, Beaudoin G, Eric C, Grunsky M, McClenaghan B, Duchesne C, Boutroy E (2016) Partial least squares-discriminant analysis of trace element compositions of magnetite from various VMS deposit subtypes: application to mineral exploration. Ore Geol Rev 78:388–408CrossRefGoogle Scholar
  56. McClenaghan MB, Cabri LJ (2011) Review of gold and platinum group element (PGE) indicator minerals methods for surficial sediment sampling. Geochem Explor Environ Anal 11:251–263CrossRefGoogle Scholar
  57. McClenaghan MB, Kjarsgaard BA (2007) Indicator mineral and surficial geochemical exploration methods for kimberlite in glaciated terrain; Examples from Canada In: Goodfellow WD (ed) Mineral Deposits of Canada: A Synthesis of Major Deposit-Types, District Metallogeny, the Evolution of Geological Provinces, and Exploration Methods. Geological Association of Canada, Mineral Deposits DivisionGoogle Scholar
  58. McDonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120:223–253CrossRefGoogle Scholar
  59. Mortensen JK, Craw D, MacKenzie DJ, Gabites JE, Ullrich T (2010) Age and origin of orogenic gold mineralization in the Otago schist belt, South Island, New Zealand; constraints from lead isotope and (super 40) Ar/ (super 39) Ar dating studies. Econ Geol 105:777–793CrossRefGoogle Scholar
  60. Mueller AG (1990) The nature and genesis of high- and medium-temperature Archaean gold deposits in the Yilgarn block, Western Australia, including a specific study of scheelite-bearing gold skarn deposits. University of Western Australia, pp 144Google Scholar
  61. Mueller AG (1991) The savage lode magnesian skarn in the Marvel Loch gold-silver mine, southern cross greenstone belt, Western Australia; part 1, structural setting, petrography, and geochemistry. Can J Earth Sci 28:659–685CrossRefGoogle Scholar
  62. Mueller AG (1992) Petrogenesis of amphibole-biotite-calcite-plagioclase alteration and laminated gold-silver quartz veins in four Archean shear zones of the Norseman District, Western Australia. Can J Earth Sci 29:388–417CrossRefGoogle Scholar
  63. Mueller AG (1997) The Nevoria gold skarn deposit in Archean iron-formation, southern cross greenstone belt, Western Australia; I, tectonic setting, petrography, and classification. Econ Geol 92:181–209CrossRefGoogle Scholar
  64. Mueller AG (2015) Structure, alteration, and geochemistry of the Charlotte quartz vein stockwork, Mt Charlotte gold mine, Kalgoorlie, Australia; time constraints, down-plunge zonation, and fluid source. Mineral Deposita 50:221–244CrossRefGoogle Scholar
  65. Mueller AG, De Laeter JR, Groves DI (1991a) Strontium isotope systematics of hydrothermal minerals from epigenetic Archean gold deposits in the Yilgarn Block, Western Australia. Econ Geol 86:780–809CrossRefGoogle Scholar
  66. Mueller AG, Groves DI, Delor CP (1991b) The savage lode magnesian skarn in the marvel loch gold-silver mine, southern cross greenstone belt, Western Australia; part 2, pressure-temperature estimates and constraints on fluid sources. Can J Earth Sci 28:686–705CrossRefGoogle Scholar
  67. Mueller AG, Nemchin AA, Frei R (2004) The Nevoria gold skarn deposit, southern cross greenstone belt, Western Australia; II, pressure-temperature-time path and relationship to postorogenic granites. Econ Geol 99:453–478CrossRefGoogle Scholar
  68. Nassau K (1963) Calcium tungstate—IV: the theory of coupled substitution. J Phys Chem Solids 24:1511–1517CrossRefGoogle Scholar
  69. Nassau K, Loiacono GM (1963) Calcium tungstate—III: trivalent rare earth substitution. J Phys Chem Solids 24:1503–1510CrossRefGoogle Scholar
  70. Peltonen P, Huhta P, Korsman K (1992) Occurrence and mineral chemistry of chrome spinel in till - implications for prospecting magmatic Ni-cu sulfide ores in Svecofennian terrain. Geological Survey of FinlandGoogle Scholar
  71. Peng J, Zhang D, Hu R, Wu M, Lin Y (2010) Sm/Nd and Sr isotope geochemistry of hydrothermal scheelite from the Zhazixi W-Sb deposit, western Hunan. Acta Geol Sin 82:1514–1521Google Scholar
  72. Poulin RS (2016) A study of the crystal chemistry, cathodoluminescence, geochemistry and oxygen isotopes in scheelite: application towards discriminating among differing ore-deposit systems geology. Laurentian University, Sudbury, Ontario, CanadaGoogle Scholar
  73. Poulin RS, McDonald AM, Kontak DJ, McClenaghan MB (2016) On the relationship between cathodoluminescence and the chemical composition of scheelite from geologically diverse ore-deposit environments. Can Mineral 54:1147–1173CrossRefGoogle Scholar
  74. Poulin RS, Kontak DJ, McDonald A, McClenaghan MB (2018) Assessing scheelite as an ore-deposit discriminator using its trace-element and REE chemistry. Can Mineral 56:265–302CrossRefGoogle Scholar
  75. Raimbault L, Baumer A, Dubru M, Benkerrou C, Croze V, Zahm A (1993) REE fractionation between scheelite and apatite in hydrothermal conditions. Am Mineral 78:1275–1285Google Scholar
  76. Ren YS, Zhao HL, Lei E, Wang H, Ju N, Wu CZ (2010) Trace element and rare earth element geochemistry of the scheelite and ore genesis of the Yangjingou large scheelite deposit in Yanbian area, northeastern China. China Acta Petrol Sin 26:3720–3726Google Scholar
  77. Ridley JR, Diamond LW (2000) Fluid chemistry of orogenic lode gold deposits and implications for genetic models In: Hagemann SG, Brown PE (eds) Gold in 2000 - reviews in economic geology 13. Society of Economic GeologistsGoogle Scholar
  78. Roberts S, Palmer MR, Waller L (2006) Sm-Nd and REE characteristics of tourmaline and scheelite from the Bjorkdal gold deposit, northern Sweden: evidence of an intrusion-related gold deposit? Econ Geol 101:1415–1425CrossRefGoogle Scholar
  79. Scanlan EJ, Scott JM, Wilson VJ, Stirling CH, Reid MR, Le Roux PJ (2018) In situ (super 87) Sr/ (super 86) Sr of scheelite and calcite reveals proximal and distal fluid-rock interaction during orogenic W-Au mineralization, Otago Schist, New Zealand. Econ Geol 113:1571–1586CrossRefGoogle Scholar
  80. Schwebel PJ, King P, Eisenlohr BN (1995) Edwards find gold deposit southern cross greenstone belt - geology and gold mines. Southern Cross, Western Australia, pp 75–80Google Scholar
  81. Shi W, Fleet ME, Sheih SR (2012) High-pressure phase transitions in Ca-Mn carbonates (Ca,Mn)CO3 studied by Raman spectroscopy. Am Mineral 97:999–1001CrossRefGoogle Scholar
  82. Shoji T, Sasaki N (1978) Fluorescent color and X-ray powder data of synthesized scheelite-powellite series as guides to determine its composition. Kozan Chishitsu Min Geol 28(6):397–404Google Scholar
  83. Somarin AK (2004) Garnet composition as an indicator of cu mineralization: evidence from skarn deposits of NW Iran. J Geochem Explor 81:47–57CrossRefGoogle Scholar
  84. Song G, Qin K, Li G, Evans NJ, Chen L (2014) Scheelite elemental and isotopic signatures; implications for the genesis of skarn-type W-Mo deposits in the Chizhou area, Anhui Province, eastern China. Am Mineral 99:303–317CrossRefGoogle Scholar
  85. Spandler CJ, Arculus RJ, Eggins SM, Mavrogenes JA, Price RC, Reay AJ (2003) Petrogenesis of the Greenhills Complex, Southland, New Zealand: magmatic differentiation and cumulate formation at the roots of a Permian island-arc volcano. Contrib Mineral Petrol 144(6):703–721CrossRefGoogle Scholar
  86. Sun K, Chen B (2017) Trace elements and Sr-Nd isotopes of scheelite; implications for the W-Cu-Mo polymetallic mineralization of the Shimensi Deposit, south China. Am Mineral 102:1114–1128Google Scholar
  87. Sverjensky DM (1984) Europium redox equilibrium in aqueous solutions. Earth Planet Sci Lett 67:70–78CrossRefGoogle Scholar
  88. Sylvester PJ, Ghaderi M (1997) Trace element analysis of scheelite by excimer laser ablation-inductively coupled plasma-mass spectrometry (ELA-ICP-MS) using a synthetic silicate glass standard. Chem Geol 141:49–65CrossRefGoogle Scholar
  89. Thió-Henestrosa S, Martín-Fernández JA (2005) Dealing with compositional data: the freeware CoDaPack. Math Geol 37(7):773–793CrossRefGoogle Scholar
  90. Toverud Ö (1984) Dispersal of tungsten in glacial drift and humus in Bergslagen, southern Central Sweden. J Geochem Explor 21:261–272CrossRefGoogle Scholar
  91. Tyson RM, Hemphill WR, Theisen AF (1988) Effect of the W:Mo ratio on the shift of excitation and emission spectra in the scheelite-powellite series. Am Mineral 73:1145–1154Google Scholar
  92. Uspensky E, Brugger J, Graeser S (1998) REE geochemistry systematics of scheelite from the Alps using luminescence spectroscopy: from global regularities to local control. Schweiz Mineral Petrogr Mitt 78:31–54Google Scholar
  93. Van Horn FR (1930) Replacement of wolframite by scheelite with observations on the fluorescence of certain tungsten minerals. Am Mineral 15:461–469Google Scholar
  94. Voicu G, Bardoux M, Stevenson R, Jebrak M (2000) Nd and Sr isotope study of hydrothermal scheelite and host rocks at Omai, Guiana Shield: implications for ore fluid source and flow path during the formation of orogenic gold deposits. Mineral DepositaGoogle Scholar
  95. Whitten EHT (1995) Open and closed compositional data in petrology. Math Geol 27(6):789–806CrossRefGoogle Scholar
  96. Xiong DX, Sun XM, Shi GY, Wang SW, Gao JF, Xue T (2006) Trace elements, rare earth elements (REE) and Nd-Sr isotopic compositions in scheelites and their implications for the mineralization in Daping gold mine in Yunnan province, China. China Acta Petrol Sin 22:733–741Google Scholar
  97. Yan L, Deng J, ChaoFeng L, GuangHai S, AiLi Z (2007) REE composition in scheelite and scheelite Sm-Nd dating for the Xuebaoding W-Sn-Be deposit in Sichuan. Chin Sci Bull 52:2543–2550CrossRefGoogle Scholar
  98. Zhao WW, Zhou M-F, Williams-Jones AE, Zhao Z (2018) Constraints on the uptake of REE by scheelite in the Baoshan tungsten skarn deposit, South China. Chem Geol 477:123–136CrossRefGoogle Scholar
  99. Zhigang Z, Chaoyang L, Yuping L, Guangzhi T (1998) REE geochemistry of scheelite of two genetic types from Nanyangtian, southeastern Yunnan, China. Geol Geochem 26:34–38Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Département de Géologie et Génie GéologiqueUniversité LavalQuébecCanada
  2. 2.Centre de recherche sur la géologie et l’ingénierie des ressources minérales (E4m)QuébecCanada

Personalised recommendations