Skip to main content
Log in

Geology, igneous geochemistry, mineralization, and fluid inclusion characteristics of the Kougarok tin-tantalum-lithium prospect, Seward Peninsula, Alaska, USA

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Kougarok prospect is situated in a Sn-W (+Ta, Nb, Li, Be) metallogenic belt formed in a post-collisional to within-plate tectonic environment. Crystal fractionation of granitic magma, combined with its mixing/mingling with mantle-derived mafic magma, is proposed as the major process causing the formation of the complex B-rich to Li-F-type granitic suite and associated Sn-rare metal (Ta, Nb, Li) mineralization. An intrusion of alkalic (potassic lamprophyric) mafic magma into a crystallizing biotite-tourmaline granite magma reservoir may have supplied a geochemically distinct assemblage of volatiles (F) and associated metals (Li, Ta, Nb) into the boron- and Sn-rich granitic system. An alternative model considers differentiation-driven unmixing of mafic and granitic silicate melts sequestering different volatile and mineralizing species that could also trigger magma-fluid and fluid-fluid unmixing, with separation of gaseous fluid coexisting with immiscible granitic and mafic magmas in the form of magmatic melt-fluid-crystal “suspension.” Biotite-tourmaline granite was accompanied by early quartz-tourmaline-cassiterite greisen at > 430–380 °C followed by quartz-tourmaline-chlorite-cassiterite stockwork at < 350 °C. The immiscibility of F- and B-rich fluids was followed by preferred ascent of F-rich fluids upward in the granitic magma reservoir, with its strong enrichment in F, Li, Ta, and Nb and subsequent crystallization of zinnwaldite granite at a shallower level, with separation of homogenous high-salinity magmatic fluid at ~ 600 °C. Crystallization and fluid exsolution continued at lower temperatures, followed by formation of topaz-quartz stockscheider at 550–500 °C. Ta-Nb mineralization in the uppermost part of the zinnwaldite granite appears to be associated with final episodes of magmatic crystallization, particularly W-Nb-rutile and columbite-tantalite with a higher Nb content. Some Ta-Nb minerals, such as columbite-tantalite with a higher Ta content, appear to be also stable during the post-magmatic stage, in quartz-tourmaline+topaz greisen and higher-temperature quartz-albite-Li mica alteration that replace zinnwaldite granite at ~ 500 to 400 °C. Nearly contemporaneous, lower-temperature quartz-albite-Li mica alteration and quartz-muscovite, quartz-topaz, and quartz-fluorite greisens formed from boiling fluids at 390–350 °C and caused removal of Ta-Nb minerals. Instead, fluid cooling and neutralization of boiling fluids affected Sn solubility and promoted massive cassiterite deposition in the late greisens. The latest phyllic quartz-sericite-carbonate alteration assemblage, comprising arsenopyrite, pyrrhotite, chalcopyrite and other sulfides, native Bi, and Bi tellurides, formed from boiling fluids at < 310 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alekseev VI, Gembitskaya IM, Marin YB (2011) Wolframoixiolite and niobian ferberite from zinnwaldite granitic rocks of the Chukchi Peninsula. Geol Ore Deposits 53:639–648

    Google Scholar 

  • Alexandrov SM (2010) Skarn-greisen deposits of the Lost River and Mount Ear ore field, Seward Peninsula, Alaska, United States. Geochem Int 48:1220–1236

    Google Scholar 

  • Amato JM, Miller EL, Calvert AT, Toro J, Wright JE (2001) Potassic magmatism on St. Lawrence Island, Alaska, and Cape Dezhnev, Northeast Russia: evidence for Early Cretaceous subduction in the Bering Strait region. Short Notes on Alaska Geology, pp 1–20

  • Amato JM, Miller EL, Wright JE, McIntosh WC (2003) Dike swarms on Seward Peninsula, Alaska, and their implications for the kinematics of Cretaceous extension in the Bering Strait region. Can J Earth Sci 40:865–886

    Google Scholar 

  • Apel RA (1984) The geology and geochemistry of the Chicken Creek dike and greisen, Kougarok Mountain. Thesis, University of Wisconsin, Madison, Alaska. M.Sc, 92 p

    Google Scholar 

  • Atkinson AB (2002) A model for the PTX properties of H2O-NaCl. M.Sc. Thesis, Virginia Tech. Institute and State Univ

  • Ayuso RA, Till AB (2007) Geochemical and Nd-Pb isotopic evolution of metabasites from attenuated continental lithosphere, Nome Group, Seward Peninsula, Alaska. Geol Soc Am Abstr Programs 39(6):489

    Google Scholar 

  • Baker T (2002) Emplacement depth and carbon dioxide-rich fluid inclusions in intrusion-related gold deposits. Econ Geol 97:1111–1117

    Google Scholar 

  • Bakker RJ (2003) Package FLUIDS 1. Computer programs for analysis of fluid inclusions data and for modeling bulk fluid properties. Chem Geol 194:3–23

    Google Scholar 

  • Becker SP, Fall A, Bodnar RJ (2008) Synthetic fluid inclusions. XVII. PVTX properties of high-salinity H2O-NaCl solutions (>30 wt.% NaCl): applications to fluid inclusions that homogenize by halite disappearance from porphyry copper and other hydrothermal ore deposits. Econ Geol 103:539–544

    Google Scholar 

  • Bodnar RJ (1995) Fluid inclusion evidence for a magmatic source for metals in porphyry copper deposits. In: Thompson JFH (ed) Magmas, fluids, and ore deposits, Min. Assoc. Canada Short Course Series, vol 23, pp 139–152

    Google Scholar 

  • Bodnar RJ, Vityk MO (1994) Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In: De Vivo B, Frezzotti ML (eds) Fluid inclusions in minerals, methods and applications. Virginia Tech, Blacksburg, pp 117–130

    Google Scholar 

  • Bodnar RJ, Burnham CW, Sterner SM (1985) Synthetic fluid inclusions in natural quartz. III. Determination of phase equilibrium properties in the system H2O-NaCl to 1000°C and 1500 bars. Geochim Cosmochim Acta 49:1861–1873

    Google Scholar 

  • Borges RMK, Villas RNN, Fuzikawa K, Dall’Agnol R, Pimenta MA (2009) Phase separation, fluid mixing, and origin of the greisens and potassic episyenite associated with the Água Boa pluton, Pitinga tin province, Amazonian Craton, Brazil. J S Am Earth Sci 27:161–183

    Google Scholar 

  • Borisenko AS (1977) Study of the salt composition of solutions of gas-liquid inclusions in minerals by the cryometric method. Russ Geol Geophys 8:16–27

    Google Scholar 

  • Bottrell SH, Yardley BDW, Buckley F (1988) A modified crush-leach method for the analysis of fluid inclusion electrolytes. Bull Mineral 111:279–290

    Google Scholar 

  • Breiter K, Ďurišová J, Hrstka T, Korbelová Z, Hložková-Vaňková M, Vašinová-Galiová M, Kanický V, Rambousek P, Knésl I, Dobeš P, Dosbaba M (2017a) Assessment of magmatic vs. metasomatic processes in rare-metal granites: a case study of the Cínovec/Zinnwald Sn–W–Li deposit, Central Europe. Lithos 292-293:198–217

    Google Scholar 

  • Breiter K, Korbelova Z, Chladek S, Uher P, Knesl I, Rambousek P, Honig S, Šešulka V (2017b) Diversity of Ti–Sn–W–Nb–Ta oxide minerals in the classic granite-related magmatic–hydrothermal Cínovec/Zinnwald Sn–W–Li deposit (Czech Republic). Eur J Mineral 29(4):727–738

    Google Scholar 

  • Burleigh RE (1991) Evaluation of the tin-tungsten greisen mineralization and associated granite at Sleitat Mountain, southwestern Alaska. U.S. Bureau of Mines Open-File Report 35–91. 38 p

  • Burt DM (1981) Acidity-salinity diagrams—application to greisen and porphyry deposits. Econ Geol 76:832–843

    Google Scholar 

  • Černý P, Blevin PL, Cuney M, London D (2005) Granite-related ore deposits. Econ Geol 100th Anniv:337–370

    Google Scholar 

  • Černý P, Novak M, Chapman R, Ferreira KJ (2007) Subsolidus behavior of niobian rutile from the Písek region, Czech Republic: a model for exsolution in W- and Fe2+>>Fe3+-rich phases. J Geosci 52:143–159

    Google Scholar 

  • Christiansen EH, Burt MD, Sheridan MF, Wilson RT (1983) The petrogenesis of topaz rhyolites from the Western United States. Contrib Mineral Petrol 83:16–30

    Google Scholar 

  • Cline JS, Bodnar RJ (1994) Direct evolution of brine from a crystallizing silicic melt at the Questa, New Mexico, molybdenum deposit. Econ Geol 89:1780–1802

    Google Scholar 

  • Crawford ML (1981) Phase equilibria in aqueous fluid inclusions. In Hollister LS, Crawford ML (eds) Fluid inclusions: application to petrology. Min Assoc Canada Short Course Handbook, Calgary 6:75–100

  • Cuney M, Marignac C, Weisbrod A (1992) The Beauvoir topaz-lepidolite-albite granite (Massif Central, France): the disseminated magmatic Sn-Li-Ta-Nb-Be mineralization. Econ Geol 87:1766–1794

    Google Scholar 

  • Darling RS (1991) An extended equation to calculate NaCl contents from final clathrate melting temperatures in H2O-CO2-NaCl fluid inclusions: implications for PT-isochors location. Geochim Cosmochim Acta 55:3869–3871

    Google Scholar 

  • Davidson P, Kamenetsky VS (2007) Primary aqueous fluids in rhyolitic magmas: melt inclusion evidence for pre- and post-trapping exsolution. Chem Geol 237:372–383

    Google Scholar 

  • Davis WJ, Williams-Jones AE (1985) A fluid inclusion study of the porphyry-greisen, tungsten-molybdenum deposit at Mount Pleasant, New Brunswick, Canada. Mineral Deposita 20:94–101

    Google Scholar 

  • Didier J, Barbarin B (1991) The different types of enclaves in granites—nomenclature. In: Didier J, Barbarin B (eds) Enclaves and granite petrology, Developments in petrology, vol 13. Elsevier, Amsterdam, pp 19–23

    Google Scholar 

  • Dingwell DB, Knoche R, Webb SL (1993) The effect of F on the density of haplogranite melt. Am Mineral 78:325–330

    Google Scholar 

  • Dobson DC (1982) Geology and alteration of the Lost River tin-tungsten-fluorite deposit, Alaska. Econ Geol 77:1033–1052

    Google Scholar 

  • Driver LA, Creaser RA, Chacko T, Erdmer P (2000) Petrogenesis of the Cretaceous Cassiar batholith, Yukon–British Columbia, Canada: implications for magmatism in the North American Cordillera Interior. GSA Bull 112(7):1119–1133

    Google Scholar 

  • Drummond E, Ohmoto H (1985) Chemical evolution and mineral deposition in boiling hydrothermal systems. Econ Geol 80:126–147

    Google Scholar 

  • Dubois M, Marignac C (1997) The H2O-NaCl-MgCl2 ternary phase diagram with special application to fluid inclusion studies. Econ Geol 92:114–119

    Google Scholar 

  • Dubois M, Monnin C, Castelain T, Coquinot Y, Gouy S, Gauthier A, Gofee B (2010) Investigation of the H2O-NaCl-LiCl System: a synthetic fluid inclusion Study and thermodynamic modeling from −50° to +100 °C and up to 12 mol/kg. Econ Geol 105:329–338

    Google Scholar 

  • Ellis WT (2015) Technical report on the Sleitat tin-silver exploration target, Southwest Alaska, for Strongbow Exploration Inc, 78 p

  • European Metals Holding Ltd (2019) Cinovec Lithium/Tin Project, Czech Republic http://europeanmet.com/projects-cinoveclithiumtinproject.html

  • Fournier RO (1999) Hydrothermal process related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econ Geol 94:1193–1212

    Google Scholar 

  • Gammons CH, Williams-Jones AE (1997) Chemical mobility of gold in the porphyry-epithermal environment. Econ Geol 92:45–59

    Google Scholar 

  • Goldfarb RJ, Meighan C, Meinert LD, Wilson FH (2016) Alaska: mineral deposits and metallogeny. In: Boyd R, Bjerkgard T, Nordah B, Schiellerup H (eds) Mineral resources in the Arctic. Geol Surv, Trondheim, pp 15–77

    Google Scholar 

  • Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals. Soc Sedim Geol Short Course 31

  • Haapala I (1997) Magmatic and postmagmatic processes in tin-mineralized granites: topaz-bearing leucogranite in the Eurajoki rapakivi granite stock, Finland. J Petrol 38:1645–1649

    Google Scholar 

  • Halter WE, Williams-Jones AE, Kontak DJ (1996) The role of greisenization in cassiterite precipitation at the East Kemptville tin deposit, Yarmouth County, Nova Scotia. Econ Geol 91:368–385

    Google Scholar 

  • Halter WE, Williams-Jones AE, Kontak DJ (1998) Origin and evolution of the greisenizing fluid at the East Kemptville tin deposit, Nova Scotia, Canada. Econ Geol 93:1026–1051

    Google Scholar 

  • Hannula KA, Miller EL, Dumitru TA, Lee J, Rubin CM (1995) Structural and metamorphic relations in the southwest Seward Peninsula, Alaska: crustal extension and the unroofing of blueschists. GSA Bull 107:536–553

    Google Scholar 

  • Heinrich CA (1990) The chemistry of hydrothermal tin(-tungsten) ore deposition. Econ Geol 85:457–481

    Google Scholar 

  • Hudson TL (1994) Crustal melting events in Alaska. Geol Soc Am Geol N Am G1:657–670

    Google Scholar 

  • Hudson TL (2005) Kougarok prospect. In Alaska Resource Data File, record TE072. US Geol Survey. https://mrdata.usgs.gov/ardf/show-ardf.php?ardf_num=TE072

  • Hudson TL, Arth JC (1983) Tin granites of Seward Peninsula, Alaska. Geol Soc Am Bull 94:768–790

    Google Scholar 

  • Hudson TL, Reed BL (1997) Tin deposits in Alaska. Econ Geol Monogr 9:450–465

    Google Scholar 

  • Ishihara S (1981) The granitoid series and mineralization. Econ Geol 75:458–484

    Google Scholar 

  • Ishihara S, Sasaki A (2002) Paired sulfur isotopic belts: Late Cretaceous-Paleogene ore deposits of Southwest Japan. Bull Geol Surv Jpn 53(5/6):461–477

    Google Scholar 

  • Kamenetsky VS, Kamenetsky MB (2010) Magmatic fluids immiscible with silicate melts: examples from inclusions in phenocrysts and glasses, and implications for magma evolution and metal transport. Geofluids 10:293–311

    Google Scholar 

  • Kamenetsky VS, van Achterberg E, Ryan CG, Naumov VB, Mernagh TP, Davidson P (2002) Extreme chemical heterogeneity of granite-derived hydrothermal fluids: an example from inclusions in a single crystal of miarolitic quartz. Geology 30:459–462

    Google Scholar 

  • Keith JD, Christiansen EH, Maughan DT, Waite KA (1998) The role of mafic alkaline magmas in felsic porphyry Cu and Mo systems. In: Lentz DR (ed) Mineralized intrusion-related skarn systems, Min Assoc Canada Short Course, vol 26, pp 211–243

    Google Scholar 

  • Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Wooley AR, Zanetti B (1989) A classification of igneous rocks and glossary of terms. Blackwell, Oxford 193 p

    Google Scholar 

  • Lehmann B (1982) Metallogeny of tin: magmatic differentiation versus geochemical heritage. Econ Geol 77:50–59

    Google Scholar 

  • Lentz DR, Lutes G, Hartree R (1988) Bi-Sn-Mo-W greisen mineralization associated with the True Hill granite, southwestern New Brunswick. Marit Sediments Atl Geol 24:321–338

    Google Scholar 

  • Li S, Li J, Chou I-M, Jiang L, Ding X (2017) The formation of the Yichun Ta-Nb deposit, South China, through fractional crystallization of magma indicated by fluid and silicate melt inclusions. J Asia Earth Sci 137:180–193

    Google Scholar 

  • Linnen R (1998) The solubility of Nb-Ta-Zr-Hf-W in granitic melt with Li and Li+F: constrains for mineralization in rare metal granite and pegmatite. Econ Geol 93:1013–1025

    Google Scholar 

  • Linnen RL, Cuney M (2005) Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. Geol Assoc Can Short Course Notes 17:45–67

    Google Scholar 

  • Linnen R, Keppler H (2002) Melt composition control of Zr/Hf fractionation in magmatic processes. Geochim Cosmochim Acta 66:3293–3301

    Google Scholar 

  • Linnen RL, Williams-Jones AE (1995) Genesis of a magmatic metamorphic hydrothermal system: the Sn-W polymetallic deposit at Pilok, Thailand. Econ Geol 90:1148–1166

    Google Scholar 

  • Linnen RL, van Lichtervelde MV, Černý P (2012) Granitic pegmatites as sources of strategic metals. Elements 8:275–280

    Google Scholar 

  • London D (2008) Pegmatites. Mineral Assoc Canada Spec Publ 10. 347 p

  • Lowenstern JB (2001) Carbon dioxide in magmas and implications for hydrothermal systems. Mineral Deposita 36:490–502

    Google Scholar 

  • Mair JL, Goldfarb RJ, Johnson CA, Hart CJR, Marsh EE (2006) Geochemical constraints on the genesis of the Scheelite Dome intrusion-related gold deposit, Tombstone gold belt, Yukon, Canada. Econ Geol 101:523–553

    Google Scholar 

  • Mair JL, Farmer GL, Groves DI, Hart CJR, Goldfarb RJ (2011) Petrogenesis of mid-Cretaceous post-collisional magmatism at Scheelite Dome, Yukon, Canada: evidence for a lithospheric mantle source for intrusion-related gold systems. Econ Geol 106:451–480

    Google Scholar 

  • Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643

    Google Scholar 

  • Manning DAC (1981) The effect of fluorine on liquid phase relationship in the system Qz-Ab-Or with excess water at 1 kbar pressure. Contrib Mineral Petrol 76:206–215

    Google Scholar 

  • Masterman GJ, Cooke DR, Berry RF, Walshe JL, Lee AW, Clark AH (2005) Fluid chemistry, structural setting, and emplacement history of the Rosario Cu-Mo porphyry and Cu-Ag-Au epithermal veins, Collahuasi District, Northern Chile. Econ Geol 100:835–862

    Google Scholar 

  • Maughan DT, Keith JD, Christiansen EH, Pulsipher T, Hattori K, Evans NJ (2002) Contributions from mafic alkaline magmas to the Bingham porphyry Cu-Au-Mo deposit, Utah, USA. Mineral Deposits 37:14–37

    Google Scholar 

  • Miller EL, Hudson TL (1991) Mid-Cretaceous extensional fragmentation of a Jurassic-Early Cretaceous compressional orogen, Alaska. Tectonics 10:781–796

    Google Scholar 

  • Moore TE, Box SE (2016) Age, distribution and style of deformation in Alaska north of 60°N: implications for assembly of Alaska. Tectonophysics 691(A):133–170

    Google Scholar 

  • Muller D, Groves DI (2019) Potassic igneous rocks and associated gold-copper mineralization, 5th edn. Springer International Publishing AG, part of Springer Nature, Berlin 398 p

    Google Scholar 

  • Muller A, Breiter K, Seltmann R, Pecskay Z (2005) Quartz and feldspar zoning in the eastern Erzgebirge volcano-plutonic complex (Germany, Czech Republic): evidence of multiple magma mixing. Lithos 80:201–227

    Google Scholar 

  • Nokleberg WJ, Bundtzen TK, Dawson KM, Eremin RA, Goryachev NA, Koch RD, Ratkin VV, Rozenblum IS, Shpikerman VI, Frolov YF, Gorodinsky ME, Melnikov VD, Ognyanov NV, Petrachenko ED, Petrachenko RI, Pozdeev AI, Ross KV, Wood DH, Grybeck D, Khanchuk AI, Kovbas LI, Nekrasov IY, Sidorov AA (1996) Significant metalliferous and selected non-metalliferous lode deposits and placer districts for the Russian Far East, Alaska, and the Canadian Cordillera. U.S. Geological Survey Open-File Report 96–513-A, 385 p

  • Nokleberg WJ, Parfenov LM, Monger JWH, Norton IO, Khanchuk AI, Stone DB, Scholl DW, Fujita K (2000) Phanerozoic tectonic evolution of the circum-North Pacific. USGS Prof Paper 1626. 136 p

  • Oakes CS, Bodnar RJ, Simonson JM (1990) The system NaCl-CaCl2-H2O: 1. The ice liquidus at 1 atm total pressure. Geochem Cosmochim Acta 54:603–610

    Google Scholar 

  • Ohmoto H, Goldhaber MB (1997) Sulfur and carbon isotopes. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York, pp 517–611

    Google Scholar 

  • Pearce JA, Harris NBW, Tindle AJ (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Petrol 25:956–983

    Google Scholar 

  • Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contrib Mineral Petrol 58:63–81

    Google Scholar 

  • Pichavant M, Manning D (1984) Petrogenesis of tourmaline granites and topaz granites: the contribution of experimental data. Phys Earth Planet Inter 35:31–50

    Google Scholar 

  • Pollard PJ (1995) Geology of rare metal deposits: an introduction and overview. Econ Geol 90:489–494

    Google Scholar 

  • Pollard PJ, Pichavant M, Charoy B (1987) Contrasting evolution of fluorine- and boron-rich tin systems. Mineral Deposita 22:315–321

    Google Scholar 

  • Potter RW (1977) Pressure corrections for fluid-inclusion homogenization temperatures based on volumetric properties of the system NaCl-H2O. US Geol Surv J Res 5:603–607

    Google Scholar 

  • Puchner CC (1986) Geology, alteration, and mineralization of the Kougarok Sn deposit, Seward Peninsula, Alaska. Econ Geol 81:1775–1794

    Google Scholar 

  • Raimbault L, Cuney M, Azencott C, Duthou J-L, Joron JL (1995) Geochemical evidence for a multistage magmatic genesis of Ta-Sn-Li mineralization in the granite at Beauvoir, French Massif Central. Econ Geol 90:548–576

    Google Scholar 

  • Ray GE, Webster ICL, Ettlinger AD (1995) The distribution of skarns in British Columbia and the chemistry and ages of their related plutonic rocks. Econ Geol 90:920–937

    Google Scholar 

  • Reid JC, Bergman SC (1982) Petrology, geochemistry and metallogeny of the Kougarok prospect: a geochemically evolved tin-bearing granitic system, Seward Peninsula, Alaska (a preliminary report RR 82–22). ARCO Oil and Gas Company. Plano, Texas 202 p

    Google Scholar 

  • Reyf FG, Seltmann R, Zaraisky GP (2000) The role of magmatic processes in the formation of banded Li,F-enriched granites from the Orlovka tantalum deposit, Transbaikalia, Russia: microthermometric evidence. Can Mineral 38:915–936

    Google Scholar 

  • Robinson BW, Kusakabe M (1975) Quantitative preparation of sulfur dioxide, for 34S/32S analyses, from sulfides by combustion with cuprous oxide. Anal Chem 47:1179–1181

    Google Scholar 

  • Roedder E (1971) Fluid inclusion studies on the porphyry-type ore deposits at Bingham, Utah, Butte, Montana, and Climax, Colorado. Econ Geol 66:98–120

    Google Scholar 

  • Roedder E (1984) Fluid inclusions in minerals. Rev Mineral 12

  • Rub AK, Stemprok M, Rub MG (1998) Tantalum mineralization in the apical part of the Cínovec (Zinnwald) granite stock. Mineral Petrol 63:199–222

    Google Scholar 

  • Sainsbury CL (1969) Geology and ore deposits of the central York Mountains, western Seward Peninsula, Alaska. US Geol Surv Bull 1287 101 p

  • Sainsbury CL, Mulligan RR, Smith WC (1969) The circum-Pacific “tin belt” in North America. In: Fox W (ed) A second technical conference on tin, vol 1. International Tin Council, Bangkok, pp 125–147

    Google Scholar 

  • Schmidt C, Bodnar RJ (2000) Synthetic fluid inclusions: XVI. PVTX properties in the system H2O-NaCl-CO2 at elevated temperatures, pressures, and salinities. Geochim Cosmochim Acta 64:3853–3869

    Google Scholar 

  • Seal RR (2006) Sulfur isotope geochemistry of sulfide minerals. Rev Mineral Geochem 61:633–677

    Google Scholar 

  • Seifert T (2010) Contributions to the metallogenetic importance of lamprophyres—examples from polymetallic Au-, Sn-W-Mo-Li-In-, As-Zn-Sn-Cu-In-Pb-Ag-/Ag-Sb-, and U-ore clusters. Mineralogia 37:55–58

    Google Scholar 

  • Selby D, Nesbitt BE, Muehlenbachs K (2000) Hydrothermal alteration and fluid chemistry of the Endako porphyry molybdenum deposit, British Columbia. Econ Geol 95:183–202

    Google Scholar 

  • Sial AN, Bettencourt JS, De Campos CP, Ferreira VP (2011) Granite-related ore deposits. Geol Soc Lond Spec Publ 350:1–5

    Google Scholar 

  • Simandl GJ (2002) Tantalum market and resources: an overview. BC Ministry of Energy, Mines and Petroleum Resources, Geological Fieldwork 2001, Paper 2002–1, pp 313–318

  • Štemprok M, Seifert T (2011) An overview of the association between lamprophyric intrusions and rare-metal mineralization. Mineralogia 42:121–162

    Google Scholar 

  • Štemprok M, Seltmann R, Breiter K (1995) The Cinovec/Zinnwald Sn-W-Li deposit. In: Breiter K, Seltmann R (eds) Excursion guide: ore mineralizations of the Krušné hory Mts. (Erzgebirge), 3 SGA Meeting. Czech Geol Surv, Brno, pp 77–83

    Google Scholar 

  • Stepanov A, Mavrogenes JA, Meffre S, Davidson P (2014) The key role of mica during igneous concentration of tantalum. Contrib Mineral Petrol 167:1–8

    Google Scholar 

  • Swanson SE, Fenn PM (1992) The effect of F and Cl on the kinetics of albite crystallization: a model for granitic pegmatites. Can Mineral 30:549–559

    Google Scholar 

  • Swanson SE, Bond JF, Newberry RJ (1988) Petrogenesis of the Ear Mountain tin granite, Seward Peninsula, Alaska. Econ Geol 83:46–61

    Google Scholar 

  • Taylor RP (1992) Petrological and geochemical characteristics of the Pleasant Ridge zinnwaldite-topaz granite, southern New Brunswick, and comparisons with other topaz-bearing felsic rocks. Can Mineral 30:895–921

    Google Scholar 

  • Taylor IR, Wall VJ (1992) The behavior of tin in granitic magmas. Econ Geol 87:403–420

    Google Scholar 

  • Thiery R, Kerkhof AM, Dubessy J (1994) νX properties of CH4-CO2 and CO2-N2 fluid inclusions: modeling for T < 31 °C and P < 400 bars. Eur J Mineral 6:753–771

    Google Scholar 

  • Thomas R, Davidson P (2013) The missing link between granites and granitic pegmatites. J Geosci 58:183–200

    Google Scholar 

  • Thomas R, Davidson P (2016) Revisiting complete miscibility between silicate melts and hydrous fluids, and the extreme enrichment of some elements in the supercritical state—consequences for the formation of pegmatites and ore deposits. Ore Geol Rev 72:1088–1101

    Google Scholar 

  • Thomas R, Förster HJ, Heinrich W (2003) The behavior of boron in a peraluminous granite-pegmatite system and associated hydrothermal solutions: a melt and fluid-inclusion study. Contrib Mineral Petrol 144:457–472

    Google Scholar 

  • Thomas R, Davidson P, Badanina E (2012) Water- and boron-rich melt inclusions in quartz from the Malkhan pegmatite, Transbaikalia, Russia. Minerals 2:435–458

    Google Scholar 

  • Till AB, Dumoulin JA (1994) Geology of Seward Peninsula and Saint Lawrence Island. In: Plafker G, Berg HC (eds) The geology of Alaska, vol 1G. Geol Soc America, Boulder, pp 141–152

    Google Scholar 

  • Till AB, Dumoulin JA, Werdon MB, Bleick HA (2011) Bedrock geologic map of the Seward Peninsula, Alaska, and accompanying conodont data. Pamphlet to accompany Scientific Investigations Map 3131. 79 p

  • Timofeev A, Williams-Jones AE (2015) The origin of niobium and tantalum mineralization in the Nechalacho REE deposit, NWT, Canada. Econ Geol 110:1719–1735

    Google Scholar 

  • Toro J, Amato JM, Natal’in B (2003) Cretaceous deformation, Chegitun River area, Chukotka Peninsula, Russia: implications for the tectonic evolution of the Bering Strait region. Tectonics 22:1–19

    Google Scholar 

  • U.S. Geological Survey (2015) Minerals yearbook 2012, Africa and the Middle East USGS v3, 412 p

  • van Lichtervelde M, Salvi S, Beziat D, Linnen RL (2007) Textural features and chemical evolution in tantalum oxides: magmatic versus hydrothermal origins for Ta mineralization in the Tanco Lower Pegmatite, Manitoba, Canada. Econ Geol 102:257–276

    Google Scholar 

  • Vanko DA, Bodnar RJ, Sterner SM (1988) Synthetic fluid inclusion: VIII. Vapor-saturated halite solubility in part of the system NaCl-CaCl2-H2O, with application to fluid inclusions from oceanic hydrothermal systems. Geochim Cosmochim Acta 52:2451–2456

    Google Scholar 

  • Vaughan APM (1995) Circum-Pacific mid-Cretaceous deformation and uplift: a superplume-related event? Geology 23:491–494

    Google Scholar 

  • Veksler IV, Thomas R (2002) An experimental study of B-, P- and F-rich synthetic granite pegmatite at 0.1 and 0.2 GPa. Contrib Mineral Petrol 143:673–683

    Google Scholar 

  • Vigneresse JL (2007) The role of discontinuous magma inputs in felsic magma and ore generation. Ore Geol Rev 30:181–216

    Google Scholar 

  • Webster JD, Holloway JR, Hervig RL (1989) Partitioning of lithophile trace elements between H2O and H2O+CO2 fluids and topaz rhyolite melt. Econ Geol 84:116–134

    Google Scholar 

  • Webster J, Thomas R, Förster HJ, Seltmann R, Tappen C (2004) Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin–tungsten mining district, Erzgebirge, Germany. Mineral Deposita 39:452–472

    Google Scholar 

  • Werdon MB, Stevens DSP, Newberry RJ, Szumigala DJ, Athey JE, Hicks SA (2005) Geologic, bedrock, and surficial maps of the Big Hurrah and Council areas, Seward Peninsula, Alaska Alaska Div Geol Geophys Surv Report 2005–1, 24 p.

  • Williams-Jones AE, Vasyukova O (2015) Fluoride-silicate melt immiscibility and the formation of the pegmatite-hosted Strange Lake REE deposit, Quebec-Labrador. In: Simandl GJ, Neetz M (eds) Symposium on Strategic and Critical Materials Proceedings, November 13–14, 2015, Victoria, British Columbia, British Columbia Ministry of Energy and Mines, British Columbia Geological Survey Paper 2015–3, pp 91–96

  • Wilson GA, Eugster HP (1990) Cassiterite solubility and tin speciation in supercritical chloride solutions. Geochem Soc Spec Publ 2:179–195

    Google Scholar 

  • Wirth KR, Grandy J, Kelley K, Sadotsky S (2002) Evolution of crust and mantle beneath the Bering Sea region: evidence from xenoliths and late Cenozoic basalts. In: Miller EL, Grantz A, Klemperer SL (eds) Tectonic evolution of the Bering Shelf-Chukchi Sea-Arctic margin and adjacent landmasses, Geol Soc America Spec Paper, vol 360, pp 167–193

    Google Scholar 

  • Witte DM, Erler EL, Cavalero RA (1983) Kougarok 1981–1982 Progress Report. Anaconda Minerals Company Internal Report. 121 p

  • Wu M, Samson I, Zhang D (2017) Textural and chemical constraints on the formation of disseminated granite-hosted W-Ta-Nb mineralization at the Dajishan deposit, Nanling Range, Southeastern China. Econ Geol 112:855–887

    Google Scholar 

  • Wu M, Samson I, Zhang D (2018) Textural features and chemical evolution in Ta-Nb oxides: implications for deuteric rare-metal mineralization in the Yichun granite-marginal pegmatite, Southeastern China. Econ Geol 113:937–960

    Google Scholar 

  • Yin L, Pollard PJ, Shouxi H, Taylor RG (1995) Geologic and geochemical characteristics of the Yichun Ta-Nb-Li deposit, Jiangxi Province, south China. Econ Geol 90:577–585

    Google Scholar 

  • Zaraisky GP (2004) Conditions of formation of rare metal deposits related to granitic magmatism. In: Starostin VI (ed) Main problems of geology and minerageny: Smirnov’s Collection—2004. MSU, Moscow, pp 105–192 (in Russian)

    Google Scholar 

  • Zaraisky GP, Aksyuk AM, Devyatova VN, Udoratina OV, Chevychelov VY (2009) The Zr/Hf ratio as a fractionation indicator of rare-metal granites. Petrology 17:25–45

    Google Scholar 

  • Zaraisky GP, Korzhinskaya V, Kotova N (2010) Experimental studies of Ta2O5 and columbite-tantalite solubility in fluoride solutions from 300° to 550 °C and 50 to 100 MPa. Mineral Petrol 99:287–300

    Google Scholar 

Download references

Acknowledgments

This paper is based on the data obtained by SGS in the course of field evaluation of the Kougarok prospect. The authors are grateful to Jim Stypula and Ron Sheardown for financial and logistic support and permission to publish the data. Eira Thomas provided great encouragement for the work. Joint fieldwork of SGS with David Trueman, Richard Walker, and Shawn Wiltzen and subsequent discussions were fruitful and inspiring. Financial support from the Program No. 55 of the Presidium of the Russian Academy of Sciences and the Scientific Program of the IGEM RAS is acknowledged. Editorial reviews by Georges Beaudoin, Rainer Thomas, Huayong Chen, and an anonymous reviewer significantly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serguei G. Soloviev.

Additional information

Editorial handling: H. Chen

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 44 kb)

ESM 2

(DOC 54 kb)

ESM 3

(PDF 266 kb)

ESM 4

(XLS 42 kb)

ESM 5

(PDF 200 kb)

ESM 6

(PDF 231 kb)

ESM 7

(PDF 190 kb)

ESM 8

(XLS 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soloviev, S.G., Kryazhev, S. & Dvurechenskaya, S. Geology, igneous geochemistry, mineralization, and fluid inclusion characteristics of the Kougarok tin-tantalum-lithium prospect, Seward Peninsula, Alaska, USA. Miner Deposita 55, 79–106 (2020). https://doi.org/10.1007/s00126-019-00883-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-019-00883-7

Keywords

Navigation