Geology, mineralization, and fluid inclusion characteristics of the Koitash redox-intermediate W–Mo skarn and W–Au stockwork deposit, western Uzbekistan, Tien Shan

  • Serguei G. SolovievEmail author
  • Sergey G. Kryazhev


The Koitash W–Mo skarn deposit in the Tien Shan Gold Belt contained resources of 60 kt WO3 in altered skarn (averaging 0.56% WO3 and 0.029% Mo) and an additional 42 kt WO3 in separate zones of phyllic alteration (averaging 0.30% WO3, 0.97 g/t Au, 0.67% Cu, and 0.02% Bi). It is related to an Early Permian multiphase granodiorite–granite–leucogranite pluton that is composed of medium- to high-K, transitional metaluminous to peraluminous, weakly oxidized–weakly reduced, ilmenite–titanite series granitoids. The pluton was emplaced in a tectonic domain with inferred ancient continental crust; the latter, coupled with possible ascent of hot asthenospheric material, has likely defined a distinct W–Mo–Au metallogenic assemblage forming in a post-collisional environment. The deposit includes redox-intermediate prograde and retrograde pyroxene–garnet skarns, partially overprinted by propylitic and phyllic alteration assemblages, comprising scheelite, molybdenite, Cu–Bi–Ag–Te sulfides, and sulfosalts, as well as native Bi and Au. Compositional similarities between W–Mo deposits, containing Au–W–Cu–Bi mineralization in late alteration assemblages, and coeval intrusion-related Au-dominant (with minor W, Bi, etc.) deposits in the region support their possible genetic links. Fluid inclusion data indicate the involvement of carbonic-free moderately saline (10.5–15.0 to 8.0–11.7 wt% NaCl-eq.), high-pressure (2000 to 1500 bars), hot (> 550–600 °C) aqueous fluid, which was sourced from crystallizing magma and formed prograde calcic skarn. This fluid was followed by moderately saline, Ca-rich (14–16 wt% NaCl, 19–21 wt% CaCl2), lower pressure (800 bars) fluids toward the retrograde skarn stage, with the deposition of scheelite in association with pyrrhotite and molybdenite, locally with minor fluorite. Propylitic quartz–amphibole–chlorite–oligoclase–calcite, with scheelite, pyrrhotite, locally molybdenite, assemblages formed from boiling high-methane aqueous-carbonic fluids at temperatures of 370–400 °C and pressures of 950–1000 bars. Phyllic quartz–sericite–Fe–carbonate, locally with albite, fluorite, chlorite, scheelite, molybdenite, and other sulfides, also Bi and Au minerals, alteration assemblages initially formed from homogeneous and then from boiling aqueous-carbonic, low-salinity fluids at temperatures of 365–370 to 300–315 °C and pressures of ~ 2000 bars. δ34S increases from retrograde skarn (δ34S = + 2.0 to + 2.3‰) through propylitic (δ34S = + 3.0 to + 3.4‰) to phyllic alteration (δ34S = + 4.2 to + 4.7‰) stages.


Skarn Tungsten Molybdenum Fluid inclusions Tien Shan Central Asia 



This paper represents part of the author’s work on research and assessment of tungsten and gold deposits in Central Asia. Editorial reviews by Georges Beaudoin, Pete Hollings, and two anonymous reviewers significantly improved the paper.

Funding information

The work was completed under financial support from the Program no. 48 of the Presidium of the Russian Academy of Sciences (PRAS-48) and the Scientific Program of the IGEM RAS.

Supplementary material

126_2019_869_MOESM1_ESM.xls (36 kb)
ESM 1 (XLS 36 kb)
126_2019_869_MOESM2_ESM.xls (30 kb)
ESM 2 (XLS 29 kb)
126_2019_869_MOESM3_ESM.xls (30 kb)
ESM 3 (XLS 29 kb)


  1. Abdullaev KM (1964) The geology of scheelite-bearing skarns of Central Asia. Uzbekistan Branch of the USSR Science Academy Publishing, Tashkent, p 458 (in Russian)Google Scholar
  2. Abzalov M (2007) Zarmitan granitoid-hosted gold deposit, Tian Shan belt. Uzbekistan Econ Geol 102:519–532CrossRefGoogle Scholar
  3. Acosta-Gongora P, Gleeson SA, Samson IM, Ootes L, Corriceau L (2015) Gold refining by bismuth melts in the iron oxide-dominated NICO Au-Co-Bi (±Cu±W) deposit, NWT, Canada. Econ Geol 110:291–314CrossRefGoogle Scholar
  4. Atkinson AB (2002) A model for the PTX properties of H2O-NaCl. M.Sc. thesis, Virginia Tech. Institute and State University, p. 126Google Scholar
  5. Atkinson WW, Einaudi MT (1978) Skarn formation and mineralization in the contact aureole at Carr Fork, Bingham, Utah. Econ Geol 73:1326–1365CrossRefGoogle Scholar
  6. Audétat A, Dolejš D, Lowenstern JB (2011) Molybdenite saturation in silicic magmas: occurrence and petrological implications. J Petrol 52:891–904CrossRefGoogle Scholar
  7. Babadzhanov AA (2012) Gold and PGE in the Koitash and Lyangar tungsten-gold deposits. In: Nurtaev BS (ed) The relationships of geodynamics, magmatism, and mineralization. Fan Publishing, Tashkent, pp 31–37 (in Russian)Google Scholar
  8. Baker T, Lang JR (2003) Reconciling fluid inclusion types, fluid processes, and fluid sources in skarns: an example from the Bismark deposit, Mexico. Mineral Deposita 38:474–495CrossRefGoogle Scholar
  9. Baker T, Pollard PJ, Mustard R, Mark G, Graham JL (2005) A comparison of granite-related tin, tungsten, and gold-bismuth deposits: implications for exploration. SEG Newslett 61:5–17Google Scholar
  10. Bakker RJ (2003) Package FLUIDS 1. Computer programs for analysis of fluid inclusions data and for modeling bulk fluid properties. Chem Geol 194:3–23CrossRefGoogle Scholar
  11. Becker SP, Fall A, Bodnar RJ (2008) Synthetic fluid inclusions. XVII. PVTX properties of high-salinity H2O-NaCl solutions (>30 wt.% NaCl): applications to fluid inclusions that homogenize by halite disappearance from porphyry copper and other hydrothermal ore deposits. Econ Geol 103:539–544CrossRefGoogle Scholar
  12. Biske YS, Seltmann R (2010) Paleozoic Tien Shan as a transitional region between the Rheic and Urals-Turkestan oceans. Gondwana Res 17:602–613CrossRefGoogle Scholar
  13. Blevin PL (2004) Redox and compositional parameters for interpreting the granitoid metallogeny of eastern Australia: implications for gold-rich ore systems. Resour Geol 54(3):241–252CrossRefGoogle Scholar
  14. Blevin PL, Chappell BW (1995) Chemistry, origin and evolution of mineralized granitoids in the Lachlan Fold Belt, Australia; the metallogeny of I- and S-type granitoids. Econ Geol 90:1604–1619CrossRefGoogle Scholar
  15. Bodnar RJ, Vityk MO (1994) Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In: De Vivo B, Frezzotti ML (eds) Fluid inclusions in minerals, methods and applications. Blacksburg, Virginia Tech, pp 117–130Google Scholar
  16. Borisenko AS (1977) Study of the salt composition of solutions of gas-liquid inclusions in minerals by the cryometric method. Russ Geol Geophys 8:16–27Google Scholar
  17. Bortnikov NS, Prokof’ev VY, Razdolina NV (1996) The genesis of the Charmitan gold-quartz deposit (Uzbekistan). Geol Ore Deposits 38:238–257Google Scholar
  18. Brookfield ME (2000) Geological development and Phanerozoic crustal accretion in the western segment of the southern Tien Shan (Kyrgyzstan, Uzbekistan and Tajikistan). Tectonophysics 328:1–14CrossRefGoogle Scholar
  19. Burnham CW (1997) Magmas and hydrothermal fluids. In: Barnes NL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York, pp 63–123Google Scholar
  20. Burruss RC (1981) Analysis of phase equilibria in C-O-H-S fluid inclusions. In Hollister LS, Crawford ML, eds., Fluid inclusions: application to petrology. Min Assoc Canada Short Course Handbook: Calgary 6:39–74Google Scholar
  21. Burt DM (1977) Mineralogy and petrology of skarn deposits. Soc Italiana Mineralogia Petrologia Rend 33:859–873Google Scholar
  22. Burton JC, Taylor LA, Chou I-M (1982) The f O2-T and f S2-T stability relations of hedenbergite and of hedenbergite-johannsenite solid solutions. Econ Geol 77:764–783CrossRefGoogle Scholar
  23. Buzkova NG, Yakushkina LM, Saminina IA, Akimov VN (1989) New data on the genesis of skarn-scheelite mineralization in western Uzbekistan (on the example of the Koitash massif). Trans Rus Mineral Soc 68(5):38–43 (in Russian)Google Scholar
  24. Cameron EM, Hattori K (1987) Archean gold mineralization and oxidized hydrothermal fluids. Econ Geol 82:1177–1191CrossRefGoogle Scholar
  25. Candela PA (1997) A review of shallow, ore-related granites: textures, volatiles, and ore metals. J Petrol 38:1619–1633CrossRefGoogle Scholar
  26. Candela PA, Boulton SL (1990) The influence of oxygen fugacity on tungsten and molybdenum partitioning between silicate melts and ilmenite. Econ Geol 85:633–640CrossRefGoogle Scholar
  27. Chappell BW, Bryant CJ, Wyborn D (2012) Peraluminous I-type granites. Lithos 153:142–153CrossRefGoogle Scholar
  28. Chappell BW, White AJR (1992) I- and S-type granites in the Lachlan Fold Belt. Trans R Soc Edinb Earth Sci 83:1–26CrossRefGoogle Scholar
  29. Cheng Z, Zhang Z, Chai F, Hou T, Santosh M, Turesebekov A, Nurtaev BS (2018) Carboniferous porphyry Cu-Au deposits in the Almalyk orefield, Uzbekistan the Sarycheku and Kalmakyr examples. Int Geol Rev 60:1–20CrossRefGoogle Scholar
  30. Chernyshev VF (1985) Geological-structural conditions of formation of scheelite-bearing skarns. Nauka Publishing, Moscow, p 280 (in Russian)Google Scholar
  31. Cole A, Wilkinson JJ, Halls C, Serenko TJ (2000) Geological characteristics, tectonic setting and preliminary interpretations of the Jilau gold-quartz vein deposit. Tajikistan Miner Deposita 35(7):600–618CrossRefGoogle Scholar
  32. Crawford ML (1981) Phase equilibria in aqueous fluid inclusions. In: Hollister LS, Crawford ML (eds) Fluid inclusions: application to petrology, Min Assoc Canada short course handbook, Calgary, vol 6, pp 75–100Google Scholar
  33. Darling RS (1991) An extended equation to calculate NaCl contents from final clathrate melting temperatures in H2O-CO2-NaCl fluid inclusions: implications for PT-isochors location. Geochim Cosmochim Acta 55:3869–3871CrossRefGoogle Scholar
  34. Dick LA, Hodgson CJ (1982) The MacTung W-Cu(Zn) contact metasomatic and related deposits of the North-eastern Canadian Cordillera. Econ Geol 77:845–867CrossRefGoogle Scholar
  35. Dolgopolova A, Seltmann R, Konopelko D, Biske YS, Shatov V, Armstrong R, Belousova E, Pankhurst R, Koneev R, Divaev F (2017) Geodynamic evolution of the western Tien Shan, Uzbekistan: insights from U-Pb SHRIMP geochronology and Sr-Nd-Pb-Hf isotope mapping of granitoids. Gondwana Res 47:76–109CrossRefGoogle Scholar
  36. Drew LJ, Berger BW, Kurbanov NK (1996) Geology and structural evolution of the Muruntau gold deposit, Kyzylkum Desert, Uzbekistan. Ore Geol Rev 11:175–196CrossRefGoogle Scholar
  37. Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Min Mag 51:431–435CrossRefGoogle Scholar
  38. Drummond E, Ohmoto H (1985) Chemical evolution and mineral deposition in boiling hydrothermal systems. Econ Geol 80:126–147CrossRefGoogle Scholar
  39. Einaudi MT (1982) General features and origin of skarns associated with porphyry copper plutons: southwestern North America. In: Titley SR (ed) Advances in geology of the porphyry copper deposits, southwestern North America. Univ. Arizona Press, Tucson, pp 185–209Google Scholar
  40. Einaudi MT, Meinert LD, Newberry RJ (1981) Skarn deposits. Econ Geol 75:317–391Google Scholar
  41. Faure G (1986) Principles of isotope geology, 2nd edn. Wiley, New YorkGoogle Scholar
  42. Fayol N, Jebrak M (2017) Archean sanukitoid gold porphyry deposits: a new understanding and genetic model from the Lac Bachelor gold deposit, Abitibi, Canada. Econ Geol 112:1913–1936CrossRefGoogle Scholar
  43. Fournier RO (1999) Hydrothermal process related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econ Geol 94:1193–1212CrossRefGoogle Scholar
  44. Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:1771–1802CrossRefGoogle Scholar
  45. Gamble RP (1982) An experimental study of sulfidation reaction involving andradite and hedenbergite. Econ Geol 77:784–797CrossRefGoogle Scholar
  46. Goldfarb R, Taylor RD, Collins GS, Goryachev NA, Orlandini OF (2014) Phanerozoic continental growth and gold metallogeny of Asia. Gondwana Res 25:48–102CrossRefGoogle Scholar
  47. Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals. Soc Sediment Geol Short Course 31:99Google Scholar
  48. Golovanov IM (ed) (2001) Ore deposits of Uzbekistan. GID-ROINGEO Publishing, Tashkent, p 611 (in Russian)Google Scholar
  49. Graupner T, Niedermann S, Rhede D, Kempe U, Seltmann R, Williams CT, Klemd R (2010) Multiple sources for mineralizing fluids in the Charmitan gold(-tungsten) mineralization (Uzbekistan). Mineral Deposita 45:667–682CrossRefGoogle Scholar
  50. Greber ND, Pettke T, Nagler TF (2014) Magmatic-hydrothermal molybdenum isotope fractionation and its relevance to the igneous crystal signature. Lithos 190–191:104–110CrossRefGoogle Scholar
  51. Guo Z, Wilson M, Liu J, Mao Q (2006) Post-collisional, potassic and ultrapotassic magmatism of the northern Tibetan Plateau—constraints on characteristics of the mantle source, geodynamic setting and uplift mechanisms. J Petrol 47:1177–1220CrossRefGoogle Scholar
  52. Gusev AI (2014) Petrology and geochemistry of the Koshrabad intrusive, Zarmitan gold-ore field (western Uzbekistan). Modern Nat Sci 9(2):78–83 (in Russian)Google Scholar
  53. Gusev AI, Gusev NI (2012) Fluid regime and petrology of shoshonitic granitoids from the super-giant Muruntau gold-ore deposit. Fund Res 6:13–18 (in Russian)Google Scholar
  54. Gustafson WI (1974) The stability of andradite, hedenbergite, and related minerals in the system Ca-Fe-Si-O-H. J Petrol 15:455–496CrossRefGoogle Scholar
  55. Hedenquist JW, Arribas A, Reynolds TJ (1998) Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Econ Geol 93:373–404CrossRefGoogle Scholar
  56. Holtz F, Becker A, Freise M, Johannes W (2001) The water-undersaturated and dry Qz-Ab-Or system revisited. Experimental results at very low water activities and geological implications. Contrib Mineral Petrol 141:347–357CrossRefGoogle Scholar
  57. Hou Z, Cook NJ (2009) Metallogenesis of the Tibetan collisional orogen: a review and introduction to the special issue. Ore Geol Rev 36:2–24CrossRefGoogle Scholar
  58. Hou Z, Yang Z, Qu X, Meng X, Li Z, Beaudoin G, Rui Z, Gao Y, Zaw K (2009) The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Tibetan orogen. Ore Geol Rev 36:25–51CrossRefGoogle Scholar
  59. Ishihara S (1981) The granitoid series and mineralization. Econ Geol 75:458–484Google Scholar
  60. Iskanderov E, Khamrabaeva ZI, Tronenok NV, Khamrabaeva LI (1990) Bismuth-molybdenite association in ores of the Western Ugat sector in the Koitash ore field. Trans Uzbekistan Min Soc 43:68–71 (in Russian)Google Scholar
  61. Ismailov MI (1975) Mineralogical-genetic and geochemical peculiarities of the skarn-rare metal deposits of the western Uzbekistan. FAN Publishing, Tashkent, p 198 (in Russian)Google Scholar
  62. Izokh EP, Yudalevich ZA, Ponomareva AP, Sukhin MV, Mushkin IV, Shmulevich GD, Pyatkov KK, Pyanovskaya IA, Sandomirskii GG (1975) Formation analysis of granitoids in West Uzbekistan. Nauka Publishing, Novosibirsk, p 520 (in Russian)Google Scholar
  63. Johnson JW, Norton D (1985) Theoretical prediction of hydrothermal conditions and chemical equilibria during skarn formation in porphyry copper systems. Econ Geol 80:1797–1823CrossRefGoogle Scholar
  64. Kempe U, Graupner T, Seltmann R, de Boorder H, Dolgopolova A, Zeylmans van Emmichoven M (2016) The Muruntau gold deposit (Uzbekistan): a unique ancient hydrothermal system in the southern Tien Shan. Geosci Front 7:495–528CrossRefGoogle Scholar
  65. Khamrabaev AI (1994) Ore-bearing metasomatites of the Koitash-Ugat zone and physical-chemical conditions of their formation. Ph.D. thesis, Tashkent, Institute of Geology and Geophysics. 24. (in Russian)Google Scholar
  66. Khamrabaev AI, Valiev RG (1991) Composition of sulfide-rare metal ores of the Koitash area (western Uzbekistan). Uzbekistan Geol Jour 6:29–36 (in Russian)Google Scholar
  67. Khamrabaev IK (1958) Magmatism and postmagmatic processes in western Uzbekistan. Science Academy of Uzbekistan Publishing, Tashkent, p 471 (in Russian)Google Scholar
  68. Konopelko D, Biske G, Seltmann R, Eklund O, Belyatsky B (2007) Post-collisional granites of the Kokshaal Range, Southern Tien Shan, Kyrgyzstan: age, petrogenesis and regional tectonic implications. Lithos 97:140–160CrossRefGoogle Scholar
  69. Konopelko D, Biske G, Kullerud K, Seltmann R, Divaev F (2011) The Koshrabad granite massif in Uzbekistan: petrogenesis, metallogeny and geodynamic setting. Russ Geol Geophys 52(12):1563–1573CrossRefGoogle Scholar
  70. Konopelko D, Seltmann R, Mamadjanov Y, Romer RL, Rojas-Agramonte Y, Jeffries T, Fidaev D, Niyozov A (2017) A geotraverse across two paleo-subduction zones in Tien Shan, Tajikistan. Gondwana Res 47:110–130CrossRefGoogle Scholar
  71. Kröner A, Kovach V, Belousova E, Hegner E, Armstrong R, Dolgopolova A, Seltmann R, Alexeiev DV, Hoffmann JE, Wong J, Sun M, Cai K, Wang T, Tong Y, Wild SA, Degtyarev KE, Rytsk E (2014) Reassessment of continental growth during the accretionary history of the central Asian Orogenic Belt. Gondwana Res 25:103–125CrossRefGoogle Scholar
  72. Kryazhev SG (2002) Isotopic-geochemical regime of the Muruntau gold deposit formation. Moscow, TsNIGRI, p 91 (in Russian)Google Scholar
  73. Kuchukova MS, Ismailov MI, Dzhamaletdinov NK (1971) Skarn-rare metal and pegmatitic formations of the western Uzbekistan. Fan Publishing, Tashkent, p 275 (in Russian)Google Scholar
  74. Kudrin VS, Soloviev SG, Stavinsky VA, Kabardin LL (1990) The gold-copper-molybdenum-tungsten ore belt of the Tien Shan. Int Geol Rev 32:930–941CrossRefGoogle Scholar
  75. Kupchenko PD, Musaev AA, Lyashenko GK, Kadyrov MH, Kushmuradov OK (1985) Sequence of formation of intrusive rocks in the Nuratau Mountains. In Questions of geochemistry. Mineralogy and petrography of Uzbekistan, Tashkent, Fan Publishing, pp 40–67 (in Russian)Google Scholar
  76. Kwak TAP (1987) W-Sn skarn deposits and related metamorphic skarns and granitoids. Elsevier, Amsterdam, p 451Google Scholar
  77. Kwak TAP, Tan TH (1981) The importance of CaCl2 in fluid composition trends—evidence from the King Island (Dolphin) skarn deposit. Econ Geol 76:955–960CrossRefGoogle Scholar
  78. Kwak TAP, White AJR (1982) Contrasting W-Cu-Mo and W-Sn-F skarn types and related granitoids. Mining Geol 32:339–351Google Scholar
  79. Lang JR, Baker T (2001) Intrusion-related gold systems: the present level of understanding. Mineral Deposita 36:477–489CrossRefGoogle Scholar
  80. Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Wooley AR, Zanetti B (1989) A classification of igneous rocks and glossary of terms. Blackwell, OxfordGoogle Scholar
  81. Lentz DR, Suzuki K (2000) A low F pegmatite-related skarn from the southwestern Grenville Province, Ontario, Canada: phase equilibria and petrogenetic implications. Econ Geol 95:1319–1337Google Scholar
  82. Lowenstern JB (2001) Carbon dioxide in magmas and implications for hydrothermal systems. Mineral Deposita 36:490–502CrossRefGoogle Scholar
  83. Ludington S, Hammarstrom JM, Robinson GR Jr, Mars JC, Miller RJ (2012) Porphyry copper assessment of the Tibetan Plateau, China. Geological Survey Scientific Investigations Report 2010-5090-F, U.S., p 63Google Scholar
  84. MacLean WH, Barrett TJ (1993) Lithogeochemical techniques using immobile elements. J Geochem Explor 48:109–133CrossRefGoogle Scholar
  85. Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc Am Bull 101:635–643CrossRefGoogle Scholar
  86. Mao J, Konopelko D, Seltmann R, Lehmann B, Chen W, Wang Y, Eklund O, Usubaliev T (2004) Postcollisional age of the Kumtor gold deposit and timing of Hercynian events in the Tien Shan, Kyrgyzstan. Econ Geol 99:1771–1780CrossRefGoogle Scholar
  87. Masterman GJ, Cooke DR, Berry RF, Walshe JL, Lee AW, Clark AH (2005) Fluid chemistry, structural setting, and emplacement history of the Rosario Cu-Mo porphyry and Cu-Ag-Au epithermal veins, Collahuasi District, Northern Chile. Econ Geol 100:835–862CrossRefGoogle Scholar
  88. McCann T, Nurtaev B, Kharin V, Valdivia-Manchengo M (2013) Ordovician–Carboniferous tectono-sedimentary evolution of the North Nuratau region, Uzbekistan (Westernmost Tien Shan). Tectonophysics 590:196–213CrossRefGoogle Scholar
  89. Meinert LD (1992) Skarns and skarn deposits. Geosci Can 19:145–162Google Scholar
  90. Meinert LD (1995) Compositional variations of igneous rocks associated with skarn deposits—chemical evidence for a genetic connection between petrogenesis and mineralization. In: Thompson JFH (Ed) Magmas, fluids, and ore deposits. Min. Assoc. Canada short course series 23, pp 401–418Google Scholar
  91. Meinert LD, Dipple GM, Nicolesku S (2005) World skarn deposits. Econ Geol 100:299–336Google Scholar
  92. Meinert LD, Hedenquist JW, Saton H, Matsuhisa Y (2003) Formation of anhydrous and hydrous skarns in Cu-Au ore deposits by magmatic fluids. Econ Geol 98:147–156CrossRefGoogle Scholar
  93. Menganson MJ, Candela PA, Piccoli PM (2011) Molybdenum, tungsten and manganese partitioning in the system pyrrhotite-Fe-S-O melt-rhyolite melt: impact of sulfide segregation on arc magma evolution. Geochim Cosmochim Acta 75:7018–7030CrossRefGoogle Scholar
  94. Middlemost EAK (1997) Magmas, rocks and planetary development. Longman, Harlow, p 299Google Scholar
  95. Morelli R, Creaser RA, Seltmann R, Stuart FM, Selby D, Graupner T (2007) Age and source constraints for the giant Muruntau gold deposit, Uzbekistan, from coupled Re-Os-He isotopes in arsenopyrite. Geology 35(9):795–798CrossRefGoogle Scholar
  96. Moon KJ (1983) The genesis of the Sangdong tungsten deposit, the Republic of Korea. Ph.D. dissertation, Univ. of Tasmania, Hobart. 389Google Scholar
  97. Muller D, Groves DI (2019) Potassic igneous rocks and associated gold-copper mineralization. Springer International Publishing AG, part of Springer Nature, Berlin-Heidelberg-New York, 5th edition. 398Google Scholar
  98. Mustard R, Ulrich T, Kamenetsky VS, Mernagh T (2006) Gold and metal enrichment in natural granitic melts during fractional crystallization. Geology 34:85–88CrossRefGoogle Scholar
  99. Nechelyustov GN (1970) On the occurrence of bismuth mineralization in the Ugat skarn-scheelite deposit (western Uzbekistan). In: Velikyi AS, Ivanov VV (eds) The geology and geochemistry of some ore deposits. Nauka Publishing, Moscow, pp 76–89 (in Russian)Google Scholar
  100. Newberry RJ (1982) Tungsten-bearings skarns of the Sierra Nevada: 1. The Pine Creek mine, California. Econ Geol 77:823–844CrossRefGoogle Scholar
  101. Newberry RJ (1983) The formation of subcalcic garnet in scheelite-bearing skarns. Can Mineral 21:529–544Google Scholar
  102. Newberry RJ (1998) W- and Sn-skarn deposits: a 1998 status report. In: Lentz DR (ed) Mineralized intrusion-related skarn systems: Mineral Assoc Canada Short Course 26:289–335Google Scholar
  103. Newberry RJ, Swanson SE (1986) Scheelite skarn granitoids: an evaluation of the roles of magmatic source and process. Ore Geol Rev 1:57–81CrossRefGoogle Scholar
  104. Nokleberg WJ (1981) Geologic setting, petrology, and geochemistry of zoned tungsten-bearing skarns at the Strawberry Mine, Central Sierra Nevada, California. Econ Geol 76:111–133CrossRefGoogle Scholar
  105. Nurtaev B, Kharin V, McCann T, Valdivia-Manchengo M (2013) The north Nuratau fault zone, Uzbekistan—structure and evolution of a Palaeozoic suture zone. J Geodyn 64:1–14CrossRefGoogle Scholar
  106. Oakes CS, Bodnar RJ, Simonson JM (1990) The system NaCl-CaCl2-H2O: 1. The ice liquidus at 1 atm total pressure. Geochem Cosmochim Acta 54:603–610CrossRefGoogle Scholar
  107. Ohmoto H, Goldhaber MB (1997) Sulfur and carbon isotopes. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 3rd edn. Wiley, New York, p. 517–611Google Scholar
  108. Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, pp 509–567Google Scholar
  109. Pearce J (1996) Sources and settings of granitic rocks. Episodes 19:120–125Google Scholar
  110. Peccerillo A, Taylor SR (1976) Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey. Contrib Mineral Petrol 58:63–81CrossRefGoogle Scholar
  111. Pokalov VT (1977) The Tyrnyauz deposit. In: Smirnov VI (ed) Ore deposits of the USSR, vol v.3. Pitman Pub. Co., London, pp 130–137Google Scholar
  112. Rabchevsky GA (1988) The tungsten industry of the USSR. US Department of the Interior, Bureau of Mines Mineral Issues. 50Google Scholar
  113. Rafal’sky RP, Bryzgalin OV, Fedorov PL (1984) Tungsten migration and scheelite deposition under hydrothermal conditions. Geochem Int 21:1–13Google Scholar
  114. Rasmussen KL, Lentz DR, Falck H, Pattison DRM (2011) Felsic magmatic phases and the role of late-stage aplitic dikes in the formation of the world-class Cantung tungsten skarn deposit, Northwest Territories, Canada. Ore Geol Rev 41:75–111CrossRefGoogle Scholar
  115. Rekharskii VI, Malinovskii EP, Kudrin AV, Chernyshev VF (1997) Distribution and formation conditions of W-Mo ore mineralization at the Tyrnyauz deposit (Russia). Geology Ore Dep 39(2):129–137Google Scholar
  116. Roedder E (1984) Fluid inclusions in minerals. Rev Mineral 12:644Google Scholar
  117. Robinson BW, Kusakabe M (1975) Quantitative preparation of sulfur dioxide, for 34S/32S analyses, from sulfides by combustion with cuprous oxide. Anal Chem 47:1179–1181CrossRefGoogle Scholar
  118. Schmidt C, Bodnar RJ (2000) Synthetic fluid inclusions: XVI. PVTX properties in the system H2O-NaCl-CO2 at elevated temperatures, pressures, and salinities. Geochim Cosmochim Acta 64:3853–3869CrossRefGoogle Scholar
  119. Seal RR (2006) Sulfur isotope geochemistry of sulfide minerals. Review. Min Geochem 61:633–677CrossRefGoogle Scholar
  120. Seifert T (2010) Contributions to the metallogenetic importance of lamprophyres—examples from polymetallic Au-, Sn-W-Mo-Li-In-, As-Zn-Sn-Cu-In-Pb-Ag-/Ag-Sb-, and U-ore clusters. Mineralogia 37:55–58Google Scholar
  121. Seltmann R, Konopelko D, Biske G, Divaev F, Sergeev S (2011) Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt. J Asian Earth Sci 42:821–838CrossRefGoogle Scholar
  122. Seltmann R, Porter TM (2005) The porphyry Cu-Au/Mo deposits of Central Eurasia: 1. Tectonic, geologic and metallogenic setting and significant deposits. In: Porter TM (Ed) Super porphyry copper and gold deposits: a global perspective, PGC Publishing, Adelaide 2, pp 467–512Google Scholar
  123. Seltmann R, Porter TM, Pirajno F (2014) Geodynamics and metallogeny of the central Eurasian porphyry and related epithermal mineral systems: a review. J Asian Earth Sci 79:810–841CrossRefGoogle Scholar
  124. Seward TM (1991) The hydrothermal geochemistry of gold. In: Foster RP (ed) Gold metallogeny and exploration. Blackies, Glasgow, pp 165–209Google Scholar
  125. Shabynin LI (1973) The formation of magnesian skarns. Nauka Publishing, Moscow, p 214 (in Russian)Google Scholar
  126. Shinohara H, Hedenquist JW (1997) Constraints of magma degassing beneath the Far Southeast porphyry Cu-Au deposit, Philippines. J Petrol 38:1741–1752CrossRefGoogle Scholar
  127. Shinohara H, Kazahaya K (1995) Degassing processes related to magma chamber crystallization. In: Thompson JFH (ed) Magmas, fluids, and ore deposits. MAC Canada short course series 23, pp. 47–70Google Scholar
  128. Soloviev SG (1993) Late Paleozoic subalkaline potassic (shoshonite-latite) magmatism in central Tien Shan. Int Geol Rev 35:288–304CrossRefGoogle Scholar
  129. Soloviev SG (1998) Rare earth and other trace elements in rocks of W-bearing magmatic complexes of the southern Tien Shan. Geochem Int 36:1133–1146Google Scholar
  130. Soloviev SG (2011) Geology, mineralization, and fluid inclusion characteristics of the Kensu W-Mo skarn and Mo-W-Cu-Au alkalic porphyry deposit, Tien-Shan, Kyrgyzstan. Econ Geol 106:193–222CrossRefGoogle Scholar
  131. Soloviev SG (2015) Geology, mineralization, and fluid inclusion characteristics of the Kumbel oxidized W-Cu-Mo skarn and Au-W stockwork deposit, Tien-Shan, Kyrgyzstan. Mineral Deposita 50:187–220CrossRefGoogle Scholar
  132. Soloviev SG, Kryazhev SG (2017) Geology, mineralization, and fluid inclusion characteristics of the Chorukh-Dairon W-Mo-Cu skarn deposit in the Middle Tien Shan, Northern Tajikistan. Ore Geol Rev 80:79–102CrossRefGoogle Scholar
  133. Soloviev SG, Kryazhev SG (2018a) Geology, mineralization, and fluid inclusion characteristics of the Kashkasu W-Mo-Cu skarn deposit associated with a high-potassic to shoshonitic igneous suite in Kyrgyzstan, Tien Shan: toward a diversity of W mineralization in Central Asia. J Asian Earth Sci 153:425–449CrossRefGoogle Scholar
  134. Soloviev SG, Kryazhev SG (2018b) Magmatic-hydrothermal evolution at the Lyangar redox-intermediate tungsten-molybdenum skarn deposit, western Uzbekistan, Tien Shan: insights from igneous petrology, hydrothermal alteration, and fluid inclusion study. Lithos 316-317:154–177CrossRefGoogle Scholar
  135. Soloviev SG, Kryazhev SG (2018c) Tungsten mineralization in the Tien Shan Gold Belt: geology, petrology, fluid inclusion, and stable isotope study of the Ingichke reduced tungsten skarn deposit, western Uzbekistan. Ore Geol Rev 101:700–724CrossRefGoogle Scholar
  136. Soloviev SG, Kryazhev SG, Dvurechenskaya SS (2017a) Geology, mineralization, stable isotope, and fluid inclusion characteristics of the Vostok-2 reduced W-Cu skarn and Au-W-Bi-As stockwork deposit, Sikhote-Alin, Russia. Ore Geol Rev 86:338–365CrossRefGoogle Scholar
  137. Soloviev SG, Kryazhev SG, Dvurechenskaya SS (2017b) Geology, mineralization, and fluid inclusion characteristics of the Lermontovskoe reduced-type tungsten (+Cu, Au, Bi) skarn deposit, Sikhote-Alin, Russia. Ore Geol Rev 89:15–39CrossRefGoogle Scholar
  138. Soloviev SG, Kryazhev SG, Dvurechenskaya SS (2019) Genesis of the Maikhura tungsten-tin skarn deposit, Tajik Tien Shan: insights from petrology, mineralogy, and fluid inclusion study. Ore Geol Rev 104:561–588CrossRefGoogle Scholar
  139. Spencer ET (2015) The transport and deposition of molybdenum in porphyry ore systems. Ph.D. thesis, Imperial College, London, 318Google Scholar
  140. Stemprok M, Seifert T (2011) An overview of the association between lamprophyric intrusions and rare-metal mineralization. Mineralogia 42:121–162CrossRefGoogle Scholar
  141. Tarasov VA, Shegay EY, Kolibaeva IV (1974) Structural-morphological types of skarn-scheelite bodies at the Koitash deposit. In study of ore field structures and exploration methods at deposits in Central Asia. SAIGIMS Publishing, Tashkent, pp 63–74 (in Russian)Google Scholar
  142. Taylor BE, Liou JG (1978) The low-temperature stability of andradite in C-O-H fluids. Amer Miner 63:378–393Google Scholar
  143. Thiery R, Kerkhof AM, Dubessy J (1994) νX properties of CH4-CO2 and CO2-N2 fluid inclusions: modeling for T < 31 °C and P < 400 bars. Eur J Mineral 6:753–771CrossRefGoogle Scholar
  144. Thompson JFH, Sillitoe RH, Baker T, Lang JR, Mortensen JK (1999) Intrusion-related gold deposits associated with tungsten-tin provinces. Mineral Deposita 34:323–333CrossRefGoogle Scholar
  145. Timón SM, Moro MC, Cembranos ML (2009) Mineralogical and physiochemical evolution of the Los Santos scheelite skarn, Salamanca, NW Spain. Econ Geol 104:961–995CrossRefGoogle Scholar
  146. Tooth B, Brugger J, Ciobanu C, Liu W (2008) Modeling of gold scavenging by bismuth melts coexisting with hydrothermal fluids. Geology 36:815–818CrossRefGoogle Scholar
  147. Trifonov BA, Solomovich LI (2018) Metallogeny of the Saryjaz ore district, eastern Kyrgyz Tien Shan. Ore Geol Rev 99:380–397CrossRefGoogle Scholar
  148. Ushakov ND, Smirnova EF, Maksudov IE, Bagrova EF (1967) Assessment of tungsten skarn deposits in Uzbekistan. Unpubl. prof. report, Ministry of Geology, UzbekSSR. Tashkent. 185. (in Russian)Google Scholar
  149. Vanko DA, Bodnar RJ, Sterner SM (1988) Synthetic fluid inclusion: VIII. Vapor-saturated halite solubility in part of the system NaCl-CaCl2-H2O, with application to fluid inclusions from oceanic hydrothermal systems. Geochim Cosmochim Acta 52:2451–2456CrossRefGoogle Scholar
  150. Wilde AR, Layer T, Mernagh T, Foster J (2001) The giant Muruntau gold deposit: geologic, geochronologic, and fluid inclusion constrains on ore genesis. Econ Geol 96:633–644CrossRefGoogle Scholar
  151. Wilkinson J, Chang Z, Cooke D, Baker M, Wilkinson C, Inglis S, Chen H, Gemmell B Jr (2015) The chlorite proximator: a new tool for detecting porphyry ore deposits. J Geochem Explor 152:10–26CrossRefGoogle Scholar
  152. Williams-Jones AE, Heinrich CA (2005) Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Econ Geology 100(7):1287–1312Google Scholar
  153. Wood SA, Samson IM (2000) The hydrothermal geochemistry of tungsten in granitoid environments: I. Relative solubilities of ferberite and scheelite as a function of T, P, pH, and mNaCl. Econ Geol 95:143–182CrossRefGoogle Scholar
  154. Yakubchuk AS (2004) Architecture and mineral deposit settings of the Altaid orogenic collage: a revised model. J Asia Earth Sci 23:761–779CrossRefGoogle Scholar
  155. Yakubchuk A, Cole A, Seltmann R, Shatov V (2002) Tectonic setting, characteristics and regional exploration criteria for gold mineralization in central Eurasia: the southern Tien Shan province as a key example. In: Goldfarb R, Nielsen R (Eds.), Integrated methods for discovery: global exploration in twenty-first century. Econ Geol Spec Publ 9:177–201Google Scholar
  156. Yakubchuk AS, Shatov VV, Kirwin D, Edwards D, Tomurtogoo O, Badarch G, Buryak VA (2005) Gold and base metal metallogeny of the Central Asian orogenic supercollage. Econ Geol 100th Anniv 1035–1068Google Scholar
  157. Yudalevich ZA, Ganzeev AA, Divaev FK, Ronkin YL (1991) The internal structure, age, and mineralization of the Koshrabad intrusion, south Tien Shan. In: The structure and dynamics of the Tien Shan lithosphere. SAIGIMS, Tashkent, pp 33–61 (in Russian)Google Scholar
  158. Yang X-M (2012) Sulfur solubility in felsic magmas: implications for genesis of intrusion-related gold mineralization. Geosci Can 39:17–32Google Scholar
  159. Zharikov VA (1970) Skarns. Int Geol Rev 12:541–559 619–647, 720–775CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry (IGEM)Russian Academy of SciencesMoscowRussia
  2. 2.Russian Central Geological Prospecting Institute (TsNIGRI)MoscowRussia

Personalised recommendations