Advertisement

Rare-earth-element enrichment in post-Variscan polymetallic vein systems of the Harz Mountains, Germany

  • Jonas Alles
  • Alexander-Maria Ploch
  • Thomas Schirmer
  • Nicole Nolte
  • Wilfried Liessmann
  • Bernd LehmannEmail author
Article

Abstract

Carbonate gangue in historically important post-Variscan polymetallic Pb-Zn-Cu-Ag vein systems in the Upper Harz Mountains has elevated rare earth element contents (ΣREE+Y, 1500 ± 340 ppm; n = 16) in bulk samples. This enrichment is due to the occurrence of abundant micrometer-sized synchysite inclusions in calcite, identified via Raman spectroscopy. Calcite bulk analyses have roof-shaped PAAS-normalized REE patterns with a Eu peak but without Ce or Y anomalies and with a steeply dipping HREE pattern. Microbeam analysis (electron microprobe and LA-ICPMS) identifies these patterns as dominated by synchysite-(Ce–Nd) with strong Eu enrichment in the weight percent range and LREE/HREE fractionation (La/Lu ~ 100, PAAS-normalized). The synchysite component in calcite gangue is detected in polymetallic veins all over the Harz Mountains, which seems to be a diagnostic feature of the region and suggests a large-scale Mesozoic fluid system. However, the Upper (western) Harz systems with no fluorite have more elevated REE content, compared with the Lower (eastern) Harz fluorite-rich systems with less REE content. Carbonate gangue in the Upper Harz systems has homogeneous 87Sr/86Sri around 0.714 and εNdi of ~ − 9, while carbonate gangue in the Lower Harz systems has 87Sr/86Sri around 0.716 and εNdi of − 2 to − 5. Fluorite in the Lower Harz Mountains has strong positive Y anomalies and variable Eu anomalies at generally low REE abundances and no REE-mineral inclusions. Both Sr and Nd isotope compositions in the fluorite are very variable and indicate an open system (87Sr/86Sri, 0.710–0.718; εNdi, − 3 to − 17). The synchysite MREE enrichment in calcite gangue in the Upper Harz Mountains compares favorably with carbonatite-related LREE-dominated bastnäsite from China and elsewhere and allows an interesting perspective as a by-product of Pb–Zn mining.

Keywords

Synchysite Rare earth elements Polymetallic vein system Harz mountains 

Notes

Acknowledgements

This study is funded by the German Ministry of Education and Research (BMBF) in the r4-initiative, project ResErVar (Ressourcenpotential hydrothermaler Lagerstätten der Varisziden: Harz). We are grateful to Alfons van den Kerkhof, Göttingen, for his support with cathodoluminescence microscopy, Klaus Simon, Göttingen, for his assistance in LA-ICP-MS analysis, Burkhard C. Schmidt, Göttingen, for Raman spectroscopy, and to Johannes Heider, Sangerhausen, for the photomicrographs with a special water immersion technique. We also want to thank Ulf Hemmerling and Fred Türck, Clausthal, for sample preparation and technical support. The manuscript benefited from discussions with Klaus Stedingk, critical review by Thomas Wagner and Volker Lüders, and editorial comments by Gregor Markl and Georges Beaudoin.

Supplementary material

126_2018_847_MOESM1_ESM.xls (21 kb)
ESM Table 1 List of all samples analyzed and their location. (XLS 21 kb)
126_2018_847_MOESM2_ESM.xls (53 kb)
ESM Table 2 Complete trace element data from solution-based ICP-MS analysis of all samples. f, fluorite; c, calcite; n.a., not analyzed. REE are highlighted. (XLS 53 kb)
126_2018_847_MOESM3_ESM.xls (8 kb)
ESM Table 3 Conditions for EPMA measurements. (XLS 8 kb)
126_2018_847_MOESM4_ESM.xls (680 kb)
ESM Table 4-8 LA-ICPMS analytical settings and data. (XLS 679 kb)
126_2018_847_MOESM5_ESM.xls (38 kb)
ESM Table 9 Sr and Nd isotope data. (XLS 37 kb)

References

  1. Augustin O (1993) Mineralchemische und mikrothermometrische Untersuchungen an den Gangmineralisationen des Unterharzes. Unpubl PhD thesis, Hamburg UniversityGoogle Scholar
  2. Bau M, Dulski P (1995) Comparative study of yttrium and rare-earth element behaviours in fluorine-rich hydrothermal fluids. Contrib Mineral Petrol 119:213–223CrossRefGoogle Scholar
  3. Baumann L, Werner CL (1968) Die Gangmineralisationen des Harzes und ihre Analogien zum Erzgebirge und zu Thüringen. Ber Deutsch Ges Geol Wiss B13:525–548Google Scholar
  4. Baumann A, Grauert B, Mecklenburg S, Vinx R (1991) Isotopic age determinations of crystalline rocks of the Upper Harz Mountains, Germany. Geol Rundsch 80:669–690CrossRefGoogle Scholar
  5. Benaouda R, Devey CW, Badra L, Ennaciri A (2017) Light rare-earth element mineralization in hydrothermal veins related to the Jbel Boho alkaline igneous complex, AntiAtlas/Morocco: the role of fluid-carbonate interactions in the deposition of synchysite-(Ce). J Geochem Explor 177:28–44CrossRefGoogle Scholar
  6. Bendel V, Schmidt BC (2008) Raman spectroscopic characterisation of disordered alkali feldspars along the join KAlSi3O8–NaAlSi3O8: application to natural sanidine and anorthoclase. Eur J Mineral 20:1055–1065CrossRefGoogle Scholar
  7. Boness M, Haack U, Feldmann KH (1990) Rb/Sr-Datierung der hydrothermalen Pb-Zn-Vererzung von Bad Grund (Harz), BRD. Chem Erde 50:1–25Google Scholar
  8. Bons P, Fusswinkel T, Gomez-Rivas E, Markl G, Wagner T, Walter B (2014) Fluid mixing from below in unconformity-related hydrothermal ore deposits. Geology 42:1035–1038CrossRefGoogle Scholar
  9. Bouabdellah M, Banks D, Klügel A (2010) Comments on “a late Triassic 40Ar/39Ar age for the El Hammam high-REE fluorite deposit (Morocco): mineralization related to the Central Atlantic Magmatic Province?” by Cheilletz et al. (Mineralium Deposita 45:323–329, 2010). Mineral Deposita 45:729–731CrossRefGoogle Scholar
  10. Burnham CW (1979) Magmas and hydrothermal fluids. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn, Wiley, pp 71–136Google Scholar
  11. Cheilletz A, Gasquet D, Filali F, Archibald DA, Nespolo M (2010) A late Triassic 40Ar/39Ar age for the El Hammam high-REE fluorite deposit (Morocco): mineralization related to the Central Atlantic Magmatic Province? Mineral Deposita 45:323–329CrossRefGoogle Scholar
  12. Dill HG, Hansen BT, Weber B (2011) REE contents, REE minerals and Sm/Nd isotopes of granite- and unconformity-related fluorite mineralization at the western edge of the Bohemian Massif: with special reference to the Nabburg-Wösendorf District, SE Germany. Ore Geol Rev 40:132–148CrossRefGoogle Scholar
  13. Förster HJ (2001) Synchysite-(Y)-synchysite-(Ce) solid solutions from Markersbach, Erzgebirge, Germany: REE and Th mobility during high-T alteration of highly fractionated aluminous A-type granites. Mineral Petrol 72:259–280CrossRefGoogle Scholar
  14. Franzke HJ, Zerjadtke W (1999) Übersicht über die Bildung der hydrothermalen Gänge des östlichen Harzes-ein Fortschrittsbericht. Aufschluss, Sonderband VFMG-Sommertagung 1999 in Halle, 39–63Google Scholar
  15. Frenzel W, Woodcock NH (2014) Cockade breccia: product of mineralisation along dilational faults. J Struct Geol 68A:194–206CrossRefGoogle Scholar
  16. Fusswinkel T, Wagner T, Wälle M, Wenzel T, Heinrich CA, Markl G (2013) Fluid mixing forms basement-hosted Pb-Zn deposits: insights from metal and halogen geochemistry of individual fluid inclusions. Geology 41:679–682CrossRefGoogle Scholar
  17. Goll M, Lippolt HJ, Obert C, Schwarz W (1998) Datierungen zum permokarbonen Magmatismus des Harzes-erste K-Ar-Ergebnisse. Terra Nostra 98(2):62–65Google Scholar
  18. Gröbner J, Kloss D (2010) Neufunde von der Grube Wolkenhügel bei Bad Lauterberg im Harz. Lapis 35:39–41Google Scholar
  19. Gröbner J, Hajek W, Junker R, Nikoleizig J (2011) Neue Mineralschätze des Harzes. Papierflieger, Clausthal-ZellerfeldGoogle Scholar
  20. Guastoni A, Nestola F, Giaretta A (2009) Mineral chemistry and alteration of rare earth element (REE) carbonates from alkaline pegmatites of Mount Malosa, Malawi. Am Mineral 94:1216–1222CrossRefGoogle Scholar
  21. Haack U, Lauterjung J (1993) Rb/Sr dating of hydrothermal overprint in Bad Grund by mixing lines. In: Möller P, Lüders V (eds) Formation of hydrothermal vein deposits, Monograph series on mineral deposits, vol 30, pp 103–114Google Scholar
  22. Haack U, Schnorrer-Köhler G, Lüders V (1987) Seltenerd-Minerale aus hydrothermalen Gängen des Harzes. Chem Erde 47:41–45Google Scholar
  23. Hagedorn B, Lippolt HJ (1993) Isotopic age constraints for epigenetic mineralizations in the Harz Mountains (Germany) from K-Ar, 40Ar/39Ar and Rb-Sr data of authigenic K-feldspars. In: Möller P, Lüders V (eds) Formation of hydrothermal vein deposits, Monograph series on mineral deposits, vol 30, pp 5–11Google Scholar
  24. Jochum KP, Weis U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günther D, Enzweiler J (2011) Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostand Geoanal Res 35:397–429CrossRefGoogle Scholar
  25. König S, Wrede V (1994) Zur Tektonik der Harzränder. Z Dt Geol Ges 145:153–171Google Scholar
  26. Lehmann B, Nakai S, Höhndorf A, Brinckmann J, Dulski P, Hein UF, Masuda A (1994) REE mineralization at Gakara, Burundi: evidence for anomalus upper mantle in the western Rift Valley. Geochim Cosmochim Acta 58:985–992CrossRefGoogle Scholar
  27. Lévêque J, Haack U (1993) Sr isotopes in calcites of hydrothermal veins in the Harz and possible sources of solutions. In: Möller P, Lüders V (eds) Formation of hydrothermal vein deposits, Monograph series on mineral deposits, vol 30, pp 5–11Google Scholar
  28. Liessmann W (2010) Historischer Bergbau im Harz. Kurzführer, 3rd edn. Springer, 470 pGoogle Scholar
  29. Liew TC, Hofmann AW (1988) Precambrian crustal components, plutonic associations, plate environment of the Hercynian Fold Belt of Central Europe: indications from a Nd and Sr isotopic study. Contrib Mineral Petrol 98:129–138CrossRefGoogle Scholar
  30. Liu Y, Chakhmouradian AR, Hou ZQ, Song WL, Kynický J (2018) Development of REE mineralization in the giant Maoniuping deposit (Sichuan, China): insights from mineralogy, fluid inclusions and trace-element geochemistry. Mineral Deposita in pressGoogle Scholar
  31. Loges A, Migdisov AA, Wagner T, Williams-Jones AE, Markl G (2013) An experimental study of the aqueous solubility and speciation of Y(III) fluoride at temperatures up to 250°C. Geochim Cosmochim Acta 123:403–415CrossRefGoogle Scholar
  32. Long KR, Van Gosen BS, Foley NK, Cordier D (2012) The principal rare earth elements deposits of the United States: a summary of domestic deposits and a global perspective. In: Sinding-Larsen R, Wellmer FW (eds) Non-renewable resource issues, International Year of Planet Earth. Springer, Dordrecht, pp 131–155CrossRefGoogle Scholar
  33. Lüders V, Möller P (1992) Fluid evolution and ore deposition in the Harz Mountains (Germany). Eur J Mineral 1992(4):1053–1068CrossRefGoogle Scholar
  34. Lüders V, Stedingk K, Franzke HJ (1993a) Review of geological setting and mineral paragenesis. In: Möller P, Lüders V (eds) Formation of hydrothermal vein deposits, Monograph series on mineral deposits, vol 30, pp 5–11Google Scholar
  35. Lüders V, Möller P, Dulski P (1993b) REE fractionation in carbonates and fluorite. In: Möller P, Lüders V (eds) Formation of hydrothermal vein deposits, Monograph series on mineral deposits 30:133–150Google Scholar
  36. Lüders V, Gerler J, Hein UF, Reutel C (1993c) Chemical and thermal development of ore-forming solutions in the Harz Mountains: a summary of fluid inclusion studies. In: Möller P, Lüders V (eds) Formation of hydrothermal vein deposits, Monograph series on mineral deposits 30:117–132Google Scholar
  37. Lüders V, Plessen B, Romer RL, Weise SM, Banks DA, Hoth P, Dulski P, Schettler G (2010) Chemistry and isotopic composition of Rotliegend and upper carboniferous formation waters from the North German Basin. Chem Geol 276:198–208CrossRefGoogle Scholar
  38. Mertz DF, Lippolt HJ, Schnorrer-Köhler G (1989) Early Cretaceous mineralizing activity in the St. Andreasberg ore district (Southwest Harz, Federal Republic of Germany). Mineral Deposita 24:9–13CrossRefGoogle Scholar
  39. Migdisov AA, Williams-Jones AE, Wagner T (2009) An experimental study of the solubility and speciation of the rare earth elements (III) in fluoride- and chloride-bearing aqueous solutions at temperatures up to 300°C. Geochim Cosmochim Acta 73:7087–7109CrossRefGoogle Scholar
  40. Migdisov AA, Williams-Jones AE, Brugger J, Caporuscio FA (2016) Hydrothermal transport, deposition, and fractionation of the REE: experimental data and thermodynamic calculations. Chem Geol 439:13–42CrossRefGoogle Scholar
  41. Mohr K (1993) Geologie und Minerallagerstätten des Harzes, 2nd edn. Schweizerbart, Stuttgart, 153 pGoogle Scholar
  42. Möller P, Morteani G, Hoefs J, Parekh PP (1979) The origin of the ore-bearing solution in the Pb-Zn veins of the western Harz, Germany, as deduced from rare-earth element and isotope distributions in calcites. Chem Geol 26:197–215CrossRefGoogle Scholar
  43. Möller P, Morteani G, Dulski P (1984) The origin of the calcites from Pb-Zn veins in the Harz Mountains, Federal Republic of Germany. Chem Geol 45:91–112CrossRefGoogle Scholar
  44. Mondillo N, Boni M, Balassone G, Spoletto S, Stellato F, Marino A, Santoro L, Spratt J (2016) Rare earth elements (REE)-minerals in the Silius fluorite vein system (Sardinia, Italy). Ore Geol Rev 74:211–224CrossRefGoogle Scholar
  45. Mondillo N, Balassone G, Boni M, Marino A, Arfè G (2017) Evaluation of the amount of rare earth elements-REE in the Silius fluorite vein system (SE Sardinia, Italy). Period Mineral 86:121–132Google Scholar
  46. Muchez P, Heijlen W, Banks D, Blundell D, Boni M, Grandia F (2005) Extensional tectonics and the timing and formation of basin-hosted deposits in Europe. Ore Geol Rev 27:241–267CrossRefGoogle Scholar
  47. Munoz M, Premo WR, Courjault-Radé P (2005) Sm–Nd dating of fluorite from the worldclass Montroc fluorite deposit, southern Massif Central, France. Mineral Deposita 39:970–975CrossRefGoogle Scholar
  48. Nolte N, Kleinhanns IC, Baero W, Hansen BT (2011) Petrography and whole-rock geochemical characteristics of Västervik granitoids to syenitoids, Southeast Sweden: constraints on petrogenesis and tectonic setting at the southern margin of the Svecofennian domain. GFF 133(3–4):173–196CrossRefGoogle Scholar
  49. Perry EP, Gysi AP (2018) Rare earth elements in mineral deposits: Speciation in hydrothermal fluids and partitioning in calcite. Geofluids, Volume 2018, Article ID 5382480, 19 pagesGoogle Scholar
  50. Reed SJB, Buckley A (1998) Rare-earth element determination in minerals by electron-probe microanalysis: application of spectrum synthesis. Mineral Mag 62:1–8CrossRefGoogle Scholar
  51. Richardson CK, Holland HD (1979) The solubility of fluorite in hydrothermal solutions, an experimental study. Geochim Cosmochim Acta 43:1313–1325CrossRefGoogle Scholar
  52. Sano S, Oberhänsli R, Romer RL, Vinx R (2002) Petrological, geochemical and isotopic constraints on the origin of the Harzburg intrusion, Germany. J Petrol 43:1529–1549CrossRefGoogle Scholar
  53. Schmidt BC, Gehlken P-L, Böttcher ME (2013) Vibrational spectra of BaMn(CO3)2 and a re-analysis of the Raman spectrum of BaMg(CO3)2. Eur J Mineral 25:137–144CrossRefGoogle Scholar
  54. Schneider J, Haack U, Stedingk K (2003a) Rb-Sr dating of epithermal vein mineralization stages in the eastern Harz Mountains by paleomixing lines. Geochim Cosmochim Acta 67:1803–1819CrossRefGoogle Scholar
  55. Schneider J, Haack U, Stedingk K (2003b) A Sr isotope study on fluorite and siderite from post-orogenic mineral veins in the eastern Harz Mountains, Germany. Mineral Deposita 38:984–991CrossRefGoogle Scholar
  56. Schnorrer-Köhler G (1983) Das Silbererzrevier St. Andreasberg im Harz. Aufschluss 34:153–175 189–203 and 231–251Google Scholar
  57. Shan HZ, Zhuo SJ, Shen RX, Sheng C (2008) Mineralogical effect correction in wavelength dispersive X-ray fluorescence analysis of pressed powder pellets. Spectrochim Acta B At Spectrosc 63:612–616CrossRefGoogle Scholar
  58. Smith MP, Henderson P, Campbell LS (2000) Fractionation of the REE during hydrothermal processes: constraints from the Bayan obo Fe-REE-Nb deposit, Inner Mongolia, China. Geochim Cosmochim Acta 64:3141–3160CrossRefGoogle Scholar
  59. Smith MP, Campbell LS, Kynicky J (2015) A review of the genesis of the world class Bayan obo Fe-REE-Nb deposit, Inner Mongolia, China: multistage processes and outstanding questions. Ore Geol Rev 64:459–476CrossRefGoogle Scholar
  60. Sperling H (1973) Die Blei-Zink-Erzgänge des Oberharzes, Lieferung 2. Geol Jb D 2:1–250 HannoverGoogle Scholar
  61. Sperling H, Stoppel D (1979) Die Blei-Zink-Erzgänge des Oberharzes, Lieferung 3. Geol Jb D 34:1–350 HannoverGoogle Scholar
  62. Stedingk K, Rentzsch J, Knitzschke G, Schenke G, Heinrich K, Scheffler H (2002) Rohstoffbericht 2002, Verbreitung, Gewinnung und Sicherung mineralischer Rohstoffe in Sachsen-Anhalt. Mittlg Geologie Sachsen-Anhalt, Beiheft 5:75–132 <Halle>Google Scholar
  63. Stoppel D, Sperling H (1980) Monographien der deutschen Blei-Zink-Erzlagerstätten. Die Blei-Zink-Erzgänge des Oberharzes. Lieferung 3: Beschreibung der Oberharzer Erzgänge (Einschließlich der Neuaufschlüsse im Erzbergwerk Grund seit Erscheinen der Lieferung 2). Geol Jb D 34:1–345Google Scholar
  64. Sverjensky DA (1984) Europium redox equilibria in aqueous solution. Earth Planet Sci Lett 67:70–78CrossRefGoogle Scholar
  65. Tanaka K, Ohta A, Kawabe I (2004) Experimental REE partitioning between calcite and aqueous solution at 25°C and 1 atm: constraints on the incorporation of seawter REE into seamount-type limestones. Geochem J 38:19–32CrossRefGoogle Scholar
  66. Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell, OxfordGoogle Scholar
  67. Voigt M, Mavromatis V, Oelkers EH (2017) The experimental determination of REE partition coefficients in the water-calcite system. Chem Geol 462:30–43CrossRefGoogle Scholar
  68. Williams-Jones AE (2015) The hydrothermal mobility of the rare earth elements. Symposium on critical and strategic materials. Br Columbia Geol Surv Paper 2015-3:119–123Google Scholar
  69. Williams-Jones AE, Migdisov AA, Samson IM (2012) Hydrothermal mobilisation of the rare earth elements—a tale of “Ceria” and “Yttria”. Elements 8:355–360CrossRefGoogle Scholar
  70. Willis JP, Duncan AR (2008) Understanding XRF spectrometry. PAnalytical B.V., AlmeloGoogle Scholar
  71. Wittern A, Schnorrer-Köhler G (1986) Die Mineralien der Glücksrad-Halde bei Oberschulenberg/Harz. Lapis 11:9–18Google Scholar
  72. Wood SA (1990) The aqueous geochemistry of the rare-earth elements and yttrium, 2. Theoretical predictions of speciation in hydrothermal solutions to 350°C at saturated water vapor pressure. Chem Geol 88:99–125CrossRefGoogle Scholar
  73. Wu C, Yuan Z, Bai G (1996) Rare earth deposits in China. In: Jones AP, Wall F, Williams TC (eds) Rare earth minerals. Chapman & Hall, LondonGoogle Scholar
  74. Xu C, Zhang H, Huang ZL, Liu CQ, Qi L, Li WB, Guan T (2004) Genesis of the carbonatite-syenite complex and REE deposit at Maoniuping, Sichuan Province, China: evidence from Pb isotope geochemistry. Geochem J 38:67–76CrossRefGoogle Scholar
  75. Zhong S, Mucci A (1995) Partitioning of rare earth elements (REEs) between calcite and seawater solutions at 25°C and 1 at, and high dissolved REE concentrations. Geochim Cosmochim Acta 59:443–453CrossRefGoogle Scholar
  76. Zivanovic V (2011) XRF analysis of mineralogical matrix effects and differences between pulverized and fused ferromanganese slag. Chem Ind Chem Eng Q 17:231–237CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jonas Alles
    • 1
  • Alexander-Maria Ploch
    • 1
  • Thomas Schirmer
    • 1
  • Nicole Nolte
    • 2
    • 3
  • Wilfried Liessmann
    • 1
  • Bernd Lehmann
    • 1
    Email author
  1. 1.Mineralogy/Mineral ResourcesTechnische Universität ClausthalClausthal-ZellerfeldGermany
  2. 2.Geoscience Centre GöttingenUniversität GöttingenGöttingenGermany
  3. 3.MAS-Analytics UGGöttingenGermany

Personalised recommendations