Skip to main content
Log in

Age and genesis of polymetallic veins in the Freiberg district, Erzgebirge, Germany: constraints from radiogenic isotopes

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Freiberg mining district in the Erzgebirge hosts three principal types of polymetallic veins. These are (1) the quartz-bearing polymetallic sulfide type, (2) the carbonate-bearing polymetallic sulfide type, and (3) the barite-fluorite-sulfide type. We investigated the genesis of each vein-type using Rb-Sr sphalerite geochronology, Sm-Nd fluorite geochronology, and Pb, Sr, and Nd isotope systematics of ore and gangue minerals. Field relationships and the Rb-Sr and Pb isotope systematics of sulfides from quartz-bearing polymetallic sulfide veins and carbonate-bearing polymetallic sulfide veins confirm their close genetic affiliation and yield a combined Rb-Sr errorchron age of 276 ± 16 Ma. The high mean squared weighted deviation (MSWD) value of 42 on the regression is considered to reflect initial isotopic heterogeneity, which is probably related to fluid-rock interaction during the hydrothermal mineralization process. Although some sphalerites from barite-fluorite-sulfide veins have strongly disturbed Rb-Sr isotope systematics, six sphalerites and one co-genetic fahlore yield a robust isochron age of 121.3 ± 4.2 Ma with an MSWD of 2.9. This age is supported by a fluorite Sm-Nd isochron age of 101 ± 18 Ma (MSWD = 1.3). The new ages and radiogenic isotope data place robust constraints on the long-held hypothesis that veins in the Freiberg district formed during two hydrothermal events. The Lower Permian age of first stage quartz-bearing polymetallic sulfide veins and carbonate-bearing polymetallic sulfide veins coincides with post-Variscan crustal reorganization and Rotliegend volcanism. The Mid-Cretaceous age of second stage barite-fluorite-sulfide veins coincides with opening of the North Atlantic Ocean during the break-up of Pangea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bau M, Romer RL, Lüders V, Duslki P (2003) Tracing element sources of hydrothermal mineral deposits: REE and Y distribution and Sr-Nd-Pb isotopes in fluorite from MVT deposits in the Pennine Orefield, England. Mineral Deposita 38(8):992–1008. https://doi.org/10.1007/s00126-003-0376-x

    Article  Google Scholar 

  • Bauer ME, Burisch M, Ostendorf J, Krause J, Frenzel M, Seifert T, Gutzmer J (2018) Trace element geochemistry of sphalerite in contrasting hydrothermal fluid systems of the Freiberg district, Germany: insights from LA-ICP-MS analysis, near-infrared light microthermometry of sphalerite-hosted fluid inclusions and sulfur isotope geochemistry. Mineralium Deposita, accepted (this issue)

  • Baumann L (1957) Tektonik und Genesis der Erzlagerstätte von Freiberg (Zentralteil). Dissertation, TU Bergakademie Freiberg, 295 p

  • Baumann L (1958) Tektonik und Genesis der Erzlagerstätte von Freiberg (Zentralteil). Freiberger Forschungshefte C 46. Akademie-Verlag, Berlin, 208 p

  • Baumann L (1994) Ore parageneses of the Erzgebirge – history, results and problems. In: von Gehlen K, Klemm DD (eds) Mineral deposits of the Erzgebirge/Krušné hory (Germany/Czech Republik): reviews and results of recent investigations. Monograph Series on Mineral Deposits 31:25–46

  • Baumann L, Hofmann J (1967) Die Beziehung zwischen Petrotektonik und Gangtektonik im Freiberger Lagerstättenbezirk. Freiberger Forschungshefte C 215:117–135

    Google Scholar 

  • Baumann L, Krs M (1967) Paläomagnetische Altersbestimmungen an einigen Mineralparagenesen des Freiberger Lagerstättenbezirkes. Geologie 16:765–780

    Google Scholar 

  • Baumann L, Kuschka E, Seifert T (2000) Lagerstätten des Erzgebirges. Enke, Stuttgart, 300 p

  • Birck JL (1986) Precision K - Rb - Sr isotopic analysis: application to Rb - Sr chronology. Chem Geol 56(1–2):73–83. https://doi.org/10.1016/0009-2541(86)90111-7

    Article  Google Scholar 

  • Boiron M-C, Cathelineau M, Richard A (2010) Fluid flows and metal deposition near basement /cover unconformity: lessons and analogies from Pb–Zn–F–Ba systems for the understanding of Proterozoic U deposits. Geofluids 10(1–2):270–292. https://doi.org/10.1111/j.1468-8123.2010.00289.x

    Article  Google Scholar 

  • Bons PD, Elburg MA, Gomez-Rivas E (2012) A review of the formation of tectonic veins and their microstructures. J Struct Geol 43:33–62. https://doi.org/10.1016/j.jsg.2012.07.005

    Article  Google Scholar 

  • Bradley D, Leach D, Symons D, Emsbo P, Premo W, Breit G, Sangster DF (2004) Reply to discussion on “Tectonic controls of Mississippi Valley-type lead–zinc mineralization in orogenic forelands” by S.E. Kesler, J.T. Christensen, R.D. Hagni, W. Heijlen, J.R. Kyle, K.C. Misra, P. Muchez, and R. van der Voo, Mineralium Deposita. Mineralium Deposita 39(4). https://doi.org/10.1007/s00126-004-0420-5

  • Brannon JC, Podosek FA, Viets JG, Leach DL, Goldhabe M, Rowan EL (1991) Strontium isotopic constraints on the origin of ore-forming fluids of the Viburnum Trend, southeast Missouri. Geochim Cosmochim Acta 55(5):1407–1419. https://doi.org/10.1016/0016-7037(91)90317-X

    Article  Google Scholar 

  • Brannon JC, Podosek FA, McLimans RK (1992) Alleghenian age of the upper Mississippi Valley zinc–lead deposit determined by Rb–Sr dating of sphalerite. Nature 356(6369):509–511. https://doi.org/10.1038/356509a0

    Article  Google Scholar 

  • Brannon JC, Cole SC, Podosek FA, Ragan VM, Coveney RM, Wallace MW, Bradley AJ (1996) Th-Pb and U-Pb dating of ore-stage calcite and Paleozoic fluid flow. Science 271(5248):491–493. https://doi.org/10.1126/science.271.5248.491

    Article  Google Scholar 

  • Breitkreuz C (2016) Die Vulkanite und Subvulkanite im Geopark Porphyrland: Ein spätpaläozoischer Supervulkankomplex. Schriftenreihe der Deutschen Gesellschaft für Geowissenschaften 88:67–72. https://doi.org/10.1127/sdgg/88/2016/67

    Article  Google Scholar 

  • Brevart O, Dupré B, Allègre CJ (1982) Metallogenic provinces and the remobilization process studied by lead isotopes; lead-zinc ore deposits from the southern Massif Central, France. Econ Geol 77(3):564–575. https://doi.org/10.2113/gsecongeo.77.3.564

    Article  Google Scholar 

  • Burisch M, Marks MAW, Nowak M, Markl G (2016a) The effect of temperature and cataclastic deformation on the composition of upper crustal fluids — an experimental approach. Chem Geol 433:24–35. https://doi.org/10.1016/j.chemgeo.2016.03.031

    Article  Google Scholar 

  • Burisch M, Walter BF, Wälle M, Markl G (2016b) Tracing fluid migration pathways in the root zone below unconformity-related hydrothermal veins: insights from trace element systematics of individual fluid inclusions. Chem Geol 429:44–50. https://doi.org/10.1016/j.chemgeo.2016.03.004

    Article  Google Scholar 

  • Cerrai E, Testa C (1963) Separation of rare earths by means of small columns of Kel-F supporting di(2-ethylhexyl)orthophosphoric acid. J Inorg Nucl Chem 25(8):1045–1050. https://doi.org/10.1016/0022-1902(63)80040-8

    Article  Google Scholar 

  • Chesley JT, Halliday AN, Scrivener RC (1991) Samarium-neodymium direct dating of fluorite mineralization. Science 252(5008):949–951. https://doi.org/10.1126/science.252.5008.949

    Article  Google Scholar 

  • Chiaradia M, Fontboté L (2003) Separate lead isotope analyses of leachate and residue rock fractions: implications for metal source tracing in ore deposit studies. Mineral Deposita 38(2):185–195. https://doi.org/10.1007/s00126-002-0301-8

    Article  Google Scholar 

  • Christensen JN, Halliday AN, Leigh KE, Randell RN, Kesler SE (1995a) Direct dating of sulfides by Rb-Sr: a critical test using the Polaris Mississippi Valley-type Zn-Pb deposit. Geochim Cosmochim Acta 59(24):5191–5197. https://doi.org/10.1016/0016-7037(95)00345-2

    Article  Google Scholar 

  • Christensen JN, Halliday AN, Vearncombe JR, Kesler SE (1995b) Testing models of large-scale crustal fluid flow using direct dating of sulfides; Rb-Sr evidence for early dewatering and formation of Mississippi valley-type deposits, Canning Basin, Australia. Econ Geol 90(4):877–884. https://doi.org/10.2113/gsecongeo.90.4.877

    Article  Google Scholar 

  • Clauer N, Chaudhuri S (1995) Clays in crustal environments: isotope dating and tracing. Springer, Berlin, Heidelberg 359 p

  • Deniel C, Pin C (2001) Single-stage method for the simultaneous isolation of lead and strontium from silicate samples for isotopic measurements. Anal Chim Acta 426(1):95–103. https://doi.org/10.1016/S0003-2670(00)01185-5

    Article  Google Scholar 

  • Dickin AP (2005) Radiogenic isotope geology, 2. ed. Cambridge University Press, Cambridge, 492 p

  • Erel Y, Harlavan Y, Blum JD (1994) Lead isotope systematics of granitoid weathering. Geochim Cosmochim Acta 58(23):5299–5306. https://doi.org/10.1016/0016-7037(94)90313-1

    Article  Google Scholar 

  • Fandrich R, Gu Y, Burrows D, Moeller K (2007) Modern SEM-based mineral liberation analysis. Int J Miner Process 84(1):310–320. https://doi.org/10.1016/j.minpro.2006.07.018

    Article  Google Scholar 

  • Förster B (1996) U/Pb-Datierungen an Pechblenden der U-Lagerstätte Aue-Niederschlema (Erzgebirge). Dissertation, Justus-Liebig-Universität Gießen

  • Förster B, Haack U (1995) U/Pb-Datierungen von Pechblenden und die hydrothermale Entwicklung der U-Lagerstätte Aue-Niederschlema (Erzgebirge). Zeitschrift für Geologische Wissenschaften 23(5/6):581–588

  • Förster H-J (1999) Die variszischen Granite des Erzgebirges und ihre akzessorischen Minerale. Habilitation, TU Bergakademie Freiberg

  • Förster H-J, Tischendorf G, Trumbull RB, Gottesmann B (1999) Late-collisional granites in the Variscan Erzgebirge, Germany. J Petrol 40(11):1613–1645. https://doi.org/10.1093/petroj/40.11.1613

    Article  Google Scholar 

  • Franke W, Haak V, Oncken O, Tanner D (eds) (2000) Orogenic processes: quantification and modelling in the Variscan Belt. Geol Soc Lond, Spec Publ 179, 459 p. https://doi.org/10.1144/GSL.SP.2000.179.01.01

  • Freymark J, Lapp M, Breitkreuz C, Altenberger U, Stanek K, Grund K (2015) Gefüge und Geochemie des spätpaläozoischen Freiberg-Frauensteiner Rhyolithganges (Osterzgebirge, Sachsen): Fließdifferentiation vs. Magmenzusammensetzung Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins 97:269–300. https://doi.org/10.1127/jmogv/97/0012

    Article  Google Scholar 

  • Frizon de Lamotte D, Fourdan B, Leleu S, Leparmentier F, de Clarence P (2015) Style of rifting and the stages of Pangea breakup. Tectonics 34(5):1009–1029. https://doi.org/10.1002/2014TC003760

    Article  Google Scholar 

  • Galindo C, Tornos F, Darbyshire DPF, Casquet C (1994) The age and origin of the barite-fluorite (Pb-Zn) veins of the Sierra del Guadarrama (Spanish Central System, Spain): a radiogenic (Nd, Sr) and stable isotope study. Chem Geol 112(3–4):351–364. https://doi.org/10.1016/0009-2541(94)90034-5

  • Gigoux M, Delpech G, Guerrot C, Pagel M, Augé T, Négrel P, Brigaud B (2015) Evidence for an Early Cretaceous mineralizing event above the basement/sediment unconformity in the intracratonic Paris Basin: paragenetic sequence and Sm-Nd dating of the world-class Pierre-Perthuis stratabound fluorite deposit. Mineral Deposita 50(4):455–463. https://doi.org/10.1007/s00126-015-0592-1

    Article  Google Scholar 

  • Gleeson SA, Yardley BWD (2002) Extensional veins and and Pb-Zn mineralization in basement rocks: the role of penetration of formation brines. In: Stober I, Bucher K (eds) Water-rock interaction. Water Science and Technology Library. Springer, Dordrecht, pp 189–205. https://doi.org/10.1007/978-94-010-0438-1_8

    Chapter  Google Scholar 

  • Graupner T, Mühlbach C, Schwarz-Schampera U, Henjes-Kunst F, Melcher F, Terblanche H (2015) Mineralogy of high-field-strength elements (Y, Nb, REE) in the world-class Vergenoeg fluorite deposit, South Africa. Ore Geol Rev 64:583–601. https://doi.org/10.1016/j.oregeorev.2014.02.012

    Article  Google Scholar 

  • Gu Y (2003) Automated scanning electron microscope based mineral liberation analysis. J Miner Mater Charact Eng 2(1):33–41. https://doi.org/10.4236/jmmce.2003.21003

    Article  Google Scholar 

  • Harlaux M, Romer RL, Mercadier J, Morlot C, Marignac C, Cuney M (2017) 40 Ma years of hydrothermal W mineralization during the Variscan orogenic evolution of the French Massif Central revealed by U-Pb dating of wolframite. Mineral Deposita. https://doi.org/10.1007/s00126-017-0721-0

  • Heijlen W, Muchez P, Banks DA, Schneider J, Kucha H, Keppens E (2003) Carbonate-hosted Zn-Pb deposits in Upper Silesia, Poland: origin and evolution of mineralizing fluids and constraints on genetic models. Econ Geol 98(5):911–932. https://doi.org/10.2113/gsecongeo.98.5.911

    Article  Google Scholar 

  • Henjes-Kunst F, Prochaska W, Niedermayr A, Sullivan N, Baxter E (2014) Sm–Nd dating of hydrothermal carbonate formation: an example from the Breitenau magnesite deposit (Styria, Austria). Chem Geol 387:184–201. https://doi.org/10.1016/j.chemgeo.2014.07.025

    Article  Google Scholar 

  • Hnatyshin D, Creaser RA, Wilkinson JJ, Gleeson SA (2015) Re-Os dating of pyrite confirms an early diagenetic onset and extended duration of mineralization in the Irish Zn-Pb ore field. Geology 43(2):143–146. https://doi.org/10.1130/G36296.1

    Article  Google Scholar 

  • Hoffmann U, Breitkreuz C, Breiter K, Sergeev S, Stanek K, Tichomirowa M (2013) Carboniferous–Permian volcanic evolution in Central Europe—U/Pb ages of volcanic rocks in Saxony (Germany) and northern Bohemia (Czech Republic). Int J Earth Sci (Geologische Rundschau) 102(1):73–99. https://doi.org/10.1007/s00531-012-0791-2

    Article  Google Scholar 

  • Janetschke N, Wilmsen M (2014) Sequence stratigraphy of the lower Upper Cretaceous Elbtal Group (Cenomanian–Turonian of Saxony, Germany). Z Dtsch Ges Geowiss 165(2):179–207. https://doi.org/10.1127/1860-1804/2013/0036

    Article  Google Scholar 

  • Jébrak M (1997) Hydrothermal breccias in vein-type ore deposits: a review of mechanisms, morphology and size distribution. Ore Geol Rev 12(3):111–134. https://doi.org/10.1016/S0169-1368(97)00009-7

    Article  Google Scholar 

  • Kesler SE, Chesley JT, Christensen JN, Hagni RD, Heijlen W, Kyle JR, Muchez P, Misra KC, van der Voo R (2004) Discussion of “Tectonic controls of Mississippi Valley-type lead-zinc mineralization in orogenic forelands” by D.C. Bradley and D.L. Leach. Mineral Deposita 39(4):512–514. https://doi.org/10.1007/s00126-004-0422-3

    Article  Google Scholar 

  • Kirnbauer T, Wagner T, Taubald H, Bode M (2012) Post-Variscan hydrothermal vein mineralization, Taunus, Rhenish Massif (Germany): constraints from stable and radiogenic isotope data. Ore Geol Rev 48:239–257. https://doi.org/10.1016/j.oregeorev.2012.03.010

    Article  Google Scholar 

  • Kroner U, Romer RL (2013) Two plates — many subduction zones: the Variscan Orogeny reconsidered. Gondwana Res 24(1):298–329. https://doi.org/10.1016/j.gr.2013.03.001

    Article  Google Scholar 

  • Kröner A, Willner AP (1998) Time of formation and peak of Variscan HP-HT metamorphism of quartz-feldspar rocks in the central Erzgebirge, Saxony, Germany. Contrib Mineral Petrol 132(1):1–20. https://doi.org/10.1007/s004100050401

    Article  Google Scholar 

  • Kröner A, Willner AP, Hegner E, Frischbutter A, Hofmann J, Bergner R (1995) Latest Precambrian (Cadomian) zircon ages, Nd isotopic systematics and P-T evolution of granitoid orthogneisses of the Erzgebirge, Saxony and Czech Republic. Geol Rundsch 84(3):437–456. https://doi.org/10.1007/BF00284512

    Article  Google Scholar 

  • Kuschka E (2002) Zur Tektonik, Verbreitung und Minerogenie sächsischer hydrothermaler Mineralgänge. Geoprofil 11, Sächsisches Landesamt für Umwelt und Geologie, Freiberg. 183 p

  • Leutwein F (1957) Alter und paragenetische Stellung der Pechblende erzgebirgischer Lagerstätten. Geologie 6:797–805

    Google Scholar 

  • Lévêque MH, Lancelot JR, George E (1988) The Bertholène uranium deposit — mineralogical characteristics and U–Pb dating of the primary U mineralization and its subsequent remobilization: consequences upon the evolution of the U deposits of the Massif Central, France. Chem Geol 69(1–2):147–163. https://doi.org/10.1016/0009-2541(88)90165-9

    Article  Google Scholar 

  • Linnemann U, Romer RL (2002) The Cadomian Orogeny in Saxo-Thuringia, Germany: geochemical and Nd–Sr–Pb isotopic characterization of marginal basins with constraints to geotectonic setting and provenance. Tectonophysics 352(1–2):33–64. https://doi.org/10.1016/S0040-1951(02)00188-9

    Article  Google Scholar 

  • Linnemann U, Romer RL (eds) (2010) Pre-Mesozoic geology of Saxo-Thuringia: from the Cadomian active margin to the Variscan Orogen. Schweizerbart, Stuttgart, 488 p

  • Ludwig KR (2012) User’s manual for Isoplot 3.75: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center, Special Publication 5, 75 p

  • Marcoux E, Moëlo Y (1991) Lead isotope geochemistry and paragenetic study of inheritance phenomena in metallogenesis; examples from base metal sulfide deposits in France. Econ Geol 86(1):106–120. https://doi.org/10.2113/gsecongeo.86.1.106

    Article  Google Scholar 

  • Matte P (2001) The Variscan collage and orogeny (480-290 Ma) and the tectonic definition of the Armorica microplate: a review. Terra Nova 13(2):122–128. https://doi.org/10.1046/j.1365-3121.2001.00327.x

    Article  Google Scholar 

  • Mingram B, Rötzler K (1999) Geochemische, petrologische und geochronologische Untersuchungen im Erzgebirgskristallin – Rekonstruktion eines Krustenstapels. Schriftenreihe für Geowissenschaften 9. Verlag der Gesellschaft für Geowissenschaften, Berlin, 80 p

  • Möller P, Lüders V (eds) (1993) Formation of hydrothermal vein deposits: a case study of the Pb-Zn, barite and fluorite deposits of the Harz Mountains. Monograph Series on Mineral Deposits30: 291p

  • Müller H (1901) Die Erzgänge des Freiberger Bergrevieres: Erläuterungen zur geologischen Specialkarte des Königreichs Sachsen. Engelmann, Leipzig, 350 p

  • Munoz M, Premo WR, Courjault-Radé P (2005) Sm- Nd dating of fluorite from the worldclass Montroc fluorite deposit, southern Massif Central, France. Mineral Deposita 39(8):970–975. https://doi.org/10.1007/s00126-004-0453-9

    Article  Google Scholar 

  • Nakai S, Halliday AN, Kesler SE, Jones HD (1990) Rb–Sr dating of sphalerites from Tennessee and the genesis of Mississippi Valley type ore deposits. Nature 346(6282):354–357. https://doi.org/10.1038/346354a0

    Article  Google Scholar 

  • Nakai S, Halliday AN, Kesler SE, Jones HD, Kyle JR, Lane TE (1993) Rb-Sr dating of sphalerites from Mississippi Valley-type (MVT) ore deposits. Geochim Cosmochim Acta 57(2):417–427. https://doi.org/10.1016/0016-7037(93)90440-8

    Article  Google Scholar 

  • Nasdala L, Götze J, Pidgeon RT, Kempe U, Seifert T (1998) Constraining a SHRIMP U-Pb age: micro-scale characterization of zircons from Saxonian Rotliegend rhyolites. Contrib Mineral Petrol 132(3):300–306. https://doi.org/10.1007/s004100050423

    Article  Google Scholar 

  • Ostendorf J, Henjes-Kunst F, Mondillo N, Boni M, Schneider J, Gutzmer J (2015) Formation of Mississippi Valley–type deposits linked to hydrocarbon generation in extensional tectonic settings: evidence from the Jabali Zn-Pb-(Ag) deposit (Yemen). Geology 43(12):1055–1058. https://doi.org/10.1130/G37112.1

    Article  Google Scholar 

  • Ostendorf J, Henjes-Kunst F, Schneider J, Melcher F, Gutzmer J (2017) Genesis of the carbonate-hosted Tres Marias Zn-Pb-(Ge) deposit, Mexico: constraints from Rb-Sr sphalerite geochronology and Pb isotopes. Econ Geol 112(5):1075–1087. https://doi.org/10.5382/econgeo.2017.4502

    Article  Google Scholar 

  • Pälchen W, Walter H (eds) (2008) Geologie von Sachsen I: Geologischer Bau und Entwicklungsgeschichte, 1. ed. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 537 p

  • Palme H, Beer H (1993) Abundance of the elements in the solar system. In: Voigt HH (ed) Classification of solar system materials. Landolt-Börnstein - Group VI Astronomy and Astrophysics 3A (Instruments, Methods, Solar System). Springer, Berlin,Heidelberg, pp 196–221. https://doi.org/10.1007/10057790_57

  • Pettke T, Diamond LW (1995) Rb–Sr isotopic analysis of fluid inclusions in quartz: evaluation of bulk extraction procedures and geochronometer systematics using synthetic fluid inclusions. Geochim Cosmochim Acta 59(19):4009–4027. https://doi.org/10.1016/0016-7037(95)00260-7

    Article  Google Scholar 

  • Pettke T, Diamond LW (1996) Rb-Sr dating of sphalerite based on fluid inclusion-host mineral isochrons; a clarification of why it works. Econ Geol 91(5):951–956. https://doi.org/10.2113/gsecongeo.91.5.951

    Article  Google Scholar 

  • Pfaff K, Romer RL, Markl G (2009) U-Pb ages of ferberite, chalcedony, agate, ‘U-mica’ and pitchblende: constraints on the mineralization history of the Schwarzwald ore district. Eur J Mineral 21(4):817–836. https://doi.org/10.1127/0935-1221/2009/0021-1944

    Article  Google Scholar 

  • Pique A, Canals A, Grandia F, Banks D (2008) Mesozoic fluorite veins in NE Spain record regional base metal-rich brine circulation through basin and basement during extensional events. Chem Geol 257(1–2):139–152. https://doi.org/10.1016/j.chemgeo.2008.08.028

  • Reich, F, Richter, Th (1863a) Notizen: Vorläufige Notiz über ein neues Metall. J Prakt Chem 89 (1): 441–442. https://doi.org/10.1002/prac.18630890156

  • Reich, F, Richter, Th (1863b) Ueber das Indium. J Prakt Chem 90 (1): 172–176. https://doi.org/10.1002/prac.18630900122

  • Reich F, Richter T (1864) Ueber das Indium (Fortsetzung). J Prakt Chem 92(1):480–485. https://doi.org/10.1002/prac.18640920180

    Article  Google Scholar 

  • Reichel W, Schneider JW, Hoffmann. U, Jaschke. I, Neumann E, Schauer M, und Walter H (2012) Rotliegend im Döhlen-Becken. In: Lützner H, Kowalczyk, G (Deutsche Stratigraphische Kommission) Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariscische Becken. Schweizerbart, Stuttgart, pp 589–625

  • Romer RL, Hahne K (2010) Life of the Rheic Ocean: scrolling through the shale record. Gondwana Res 17(2–3): 236–253. https://doi.org/10.1016/j.gr.2009.09.004

  • Romer RL, Förster H-J, Breitkreuz C (2001) Intracontinental extensional magmatism with a subduction fingerprint: the late Carboniferous Halle Volcanic Complex (Germany). Contrib Mineral Petrol 141(2):201–221. https://doi.org/10.1007/s004100000231

    Article  Google Scholar 

  • Romer RL, Förster H-J, Štemprok M (2010a) Age constraints for the late-Variscan magmatism in the Altenberg–Teplice Caldera (eastern Erzgebirge/Krušné hory). Neues Jahrbuch für Mineralogie - Abhandlungen: Journal of Mineralogy and Geochemistry 187(3):289–305. https://doi.org/10.1127/0077-7757/2010/0179

    Article  Google Scholar 

  • Romer RL, Schneider JC, Linnemann U (2010b) Post-Variscan deformation and hydrothermal mineralization in Saxo-Thuringia and beyond: a geochronological review. In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia: from the Cadomian active margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 347–360

    Google Scholar 

  • Romer RL, Förster H-J, Hahne K (2012) Strontium isotopes — a persistent tracer for the recycling of Gondwana crust in the Variscan Orogen. Gondwana Res 22(1):262–278. https://doi.org/10.1016/j.gr.2011.09.005

    Article  Google Scholar 

  • Romer RL, Meixner A, Förster H-J (2014) Lithium and boron in late-orogenic granites—isotopic fingerprints for the source of crustal melts? Geochim Cosmochim Acta 131:98–114. https://doi.org/10.1016/j.gca.2014.01.018

    Article  Google Scholar 

  • Rosa D, Schneider J, Chiaradia M (2016) Timing and metal sources for carbonate-hosted Zn-Pb mineralization in the Franklinian Basin (North Greenland): constraints from Rb-Sr and Pb isotopes. Ore Geol Rev 79:392–407. https://doi.org/10.1016/j.oregeorev.2016.05.020

    Article  Google Scholar 

  • Rösler HJ, Pilot J (1967) Die zeitliche Einstufung der sächsisch-thüringischen Ganglagerstätten mit Hilfe der K-Ar-Methode. Freiberger Forschungshefte C 209:87–98

    Google Scholar 

  • Rösler HJ, Pilot J, Starke R, Schreiter E (1990) Die Vererzungen im Granit von Niederbobritzsch bei Freiberg. Abhandlungen des Staatlichen Museums für Mineralogie und Geologie zu Dresden 37:103–123

    Google Scholar 

  • Rösler HJ, Kühne R (1970) Regularities in the hydrothermal change of wall-rocks of some Erzgebirge deposits and their genetic significance. In: Pouba Z, Ŝtemprok M. (Eds.) Problems of hydrothermal ore deposition: the origin, evolution and control of ore-forming fluids. International Union of Geological Sciences, Series A, vol. 2. Schweizerbart’sche Verlagsbuchhandlung (Nägele und Obermiller), Stuttgart, pp. 304–311

  • Scheck-Wenderoth M, Krzywiec P, Zühlke R, Maystrenko Y, Froitzheim N (2008) Permian to Cretaceous tectonics. In: McCann T (ed) The geology of Central Europe, Volume 2: Mesozoic and Cenozoic. Geological Society, London, pp 999–1030

  • Schlichting M, Pilot J, Rösler HJ (1982) Sr-Isotopenuntersuchungen am Niederbobritzscher Granit. Freiberger Forschungshefte C 389:107–113

    Google Scholar 

  • Schneider J (2000) Indirekte Rb-Sr-Chronometrie postorogener Hydrothermalsysteme und assoziierter Gangmineralisationen im Rhenohercynikum. Dissertation, Justus-Liebig-Universität Gießen

  • Schneider J, Haack U, Stedingk K (2003) Rb-Sr dating of epithermal vein mineralization stages in the eastern Harz Mountains (Germany) by paleomixing lines. Geochim Cosmochim Acta 67(10):1803–1819. https://doi.org/10.1016/S0016-7037(02)01223-1

    Article  Google Scholar 

  • Schneider J, Melcher F, Brauns M (2007) Concordant ages for the giant Kipushi base metal deposit (DR Congo) from direct Rb–Sr and Re–Os dating of sulfides. Mineral Deposita 42(7):791–797. https://doi.org/10.1007/s00126-007-0158-y

    Article  Google Scholar 

  • Schneider JW, Romer RL (2010) The Late Variscan molasses (Late Carboniferous to Late Permian) of the Saxo-Thuringian Zone. In: Linnemann U, Romer RL (eds) Pre-Mesozoic geology of Saxo-Thuringia: from the Cadomian active margin to the Variscan Orogen. Schweizerbart, Stuttgart, pp 323–346

    Google Scholar 

  • Schneider JW, Rößler R, Fischer F (2012) Rotliegend des Chemnitz-Beckens (syn. Erzgebirge-Becken). In: Lützner H, Kowalczyk, G (Deutsche Stratigraphische Kommission) Stratigraphie von Deutschland X. Rotliegend. Teil I: Innervariscische Becken. Schweizerbart, Stuttgart, pp 530–588

  • Sebastian U (2013) Die Geologie des Erzgebirges. Springer, Berlin, Heidelberg, 270 p. https://doi.org/10.1007/978-3-8274-2977-3

    Book  Google Scholar 

  • Seifert T (2008) Metallogeny and petrogenesis of lamprophyres in the mid-European Variscides: post-collosional magmatism and its relationship to late-Variscan ore forming processes in the Erzgebirge (Bohemian Massiv). IOS Press, Rotterdam, 303 p

  • Seifert T, Pavlova GG (2016) New 40Ar/39Ar ages of Sn-and W-polymetallic mineralization in the Erzgebirge/Krušné hory (DE, CZ): Goldschmidt Conference Abstracts: 2792

  • Seifert T, Sandmann D (2006) Mineralogy and geochemistry of indium-bearing polymetallic vein-type deposits: implications for host minerals from the Freiberg district, eastern Erzgebirge, Germany. Ore Geol Rev 28(1):1–31. https://doi.org/10.1016/j.oregeorev.2005.04.005

    Article  Google Scholar 

  • Škácha P, Goliáš V, Sejkora J, Plášil J, Strnad L, Škoda R, Ježek J (2009) Hydrothermal uranium-base metal mineralization of the Jánská vein, Březové Hory, Příbram, Czech Republic: Lead isotopes and chemical dating of uraninite. J Geosci 54(1):1–13. https://doi.org/10.3190/jgeosci.030

    Article  Google Scholar 

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26(2):207–221. https://doi.org/10.1016/0012-821X(75)90088-6

    Article  Google Scholar 

  • Steiger RH, Jäger E (1977) Subcommission on geochronology: convention on the use of decay constants in geo- and cosmochronology. Earth Planet Sci Lett 36(3):359–362. https://doi.org/10.1016/0012-821X(77)90060-7

    Article  Google Scholar 

  • Stein HJ (2014) Dating and tracing the history of ore formation. In: Holland HD, Turekian KK (eds) Treatise on geochemistry. Elsevier, Oxford, pp 87–118. https://doi.org/10.1016/B978-0-08-095975-7.01104-9

  • Ströbele F, Staude S, Pfaff K, Premo WR, Hildebrandt LH, Baumann A, Pernicka E, Markl G (2012) Pb isotope constraints on fluid flow and mineralization processes in SW Germany. Neues Jahrbuch für Mineralogie - Abhandlungen: Journal of Mineralogy and Geochemistry 189(3):287–309. https://doi.org/10.1127/0077-7757/2012/0225

    Article  Google Scholar 

  • Thomas R (1982) Ergebnisse der thermobarogeochemischen Untersuchungen an Flüssigkeitseinschlüssen in Mineralen der postmagmatischen Zinn-Wolfram Mineralisation des Erzgebirges. Freiberger Forschungshefte C 370. VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 85 p

  • Tichomirowa M (1997) 207Pb/206Pb-Einzelzirkonevaporisations-Datierungen zur Bestimmung des Intrusionsalters des Niederbobritzscher Granites. Terra Nostra 5:183–185

    Google Scholar 

  • Tichomirowa M (2003) Die Gneise des Erzgebirges - hochmetamorphe Äquivalente von neoproterozoisch-frühpaläozoischen Grauwacken und Granitoiden der Cadomiden. Habilitation, TU Bergakademie Freiberg / Freiberger Forschungshefte C 495:222

    Google Scholar 

  • Tischendorf G (1955) Paragenetische und tektonische Untersuchungen auf Gängen der fluorbarytischen Bleiformation Freibergs, insbesondere am Halsbrücker Spat. Freiberger Forschungshefte C 18. Akademie-Verlag, Berlin, p 130

  • Trinkler M, Monecke T, Thomas R (2005) Constraints on the genesis of yellow fluorite in hydrothermal barite fluorite veins of the Erzgebirge, eastern Germany: evidence from optical absorption spectroscopy, rare earth element data, and fluid-inclusion investigations. Can Mineral 43(3):883–898. https://doi.org/10.2113/gscanmin.43.3.883

    Article  Google Scholar 

  • Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the earth’s crust. Geol Soc Am Bull 72(2):175–192. https://doi.org/10.1130/0016-7606(1961)72[175:DOTEIS]2.0.CO;2

  • Von Cotta, B (1855) Die Lehre von den Erzlagerstätten. Verlag von JG Engelhardt, Freiberg: p 334

  • Villa IM, de BP, Holden NE, Renne PR (2015) IUPAC-IUGS recommendation on the half life of 87Rb. Geochim Cosmochim Acta 164:382–385. https://doi.org/10.1016/j.gca.2015.05.025

    Article  Google Scholar 

  • Voigt S, Wagreich M, Surlyk F, Walaszczyk I, Uličný D, Čech S, Voigt T, Wiese F, Wilmsen M, Niebuhr B, Reich M, Funk H, Michalík J, Jagt JWM, Felder PJ, Schulp AS (2008) Cretaceous. In: McCann T (ed) The geology of Central Europe, vol 2: Mesozoic and Cenozoic. Geological Society, London, pp 923–997

    Google Scholar 

  • von Seckendorff V, Timmerman MJ, Kramer W, Wrobel P (2004) New 40Ar/39Ar ages and geochemistry of Late Carboniferous-Early Permian lamprophyres and related volcanic rocks in the Saxothuringian Zone of the Variscan Orogen (Germany). In: Wilson M, Neumann E-R, Davies GR, Timmerman MJ, Heeremans M., Larsen BT (eds) Permo-Carboniferous magmatism and rifting in Europe. Geological Society, London, Special Publications 223(1):335–359. https://doi.org/10.1144/GSL.SP.2004.223.01.15

  • Walter BF, Burisch M, Marks MAW, Markl G (2017) Major element compositions of fluid inclusions from hydrothermal vein-type deposits record eroded sedimentary units in the Schwarzwald district, SW Germany. Mineral Deposita. https://doi.org/10.1007/s00126-017-0719-7

  • Wendt I, Carl C (1991) The statistical distribution of the mean squared weighted deviation. Chem Geol 86(4):275–285. https://doi.org/10.1016/0168-9622(91)90010-T

    Article  Google Scholar 

  • Wendt I, Höhndorf A, Wendt JI, Müller P, Wetzel K (1995) Radiometric dating of volcanic rocks in NW-Saxony by combined use of U-Pb and Sm-Nd zircon dating as well as Sm-Nd and Rb-Sr whole-rock and mineral systematics. Terra Nostra 7:147–148

    Google Scholar 

  • Willner AP, Sebazungu E, Gerya TV, Maresch WV, Krohe A (2002) Numerical modelling of PT-paths related to rapid exhumation of high-pressure rocks from the crustal root in the Variscan Erzgebirge Dome (Saxony/Germany). J Geodyn 33(3):281–314. https://doi.org/10.1016/S0264-3707(01)00071-0

    Article  Google Scholar 

  • Wilmsen M, Niebuhr B (2014) Die Kreide in Sachsen: Cretaceous in Saxony. Geologica Saxonica - Journal of Central European Geology 60(1):3–12

    Google Scholar 

  • Wilson M, Neumann E-R, Davies GR, Timmerman MJ, Heeremans M, Larsen BT (eds) (2004) Permo-Carboniferous magmatism and rifting in Europe. Geological society, London. Special Publications 223(1):498. https://doi.org/10.1144/GSL.SP.2004.223.01.01

  • Winkler, C (1886a) Germanium, Ge, ein neues, nichtmetallisches Element. Ber Dtsch Chem Ges 19(1): 210–211. https://doi.org/10.1002/cber.18860190156

  • Winkler, C (1886b) Mittheilungen über das Germanium. J Prakt Chem 34(1): 177–229. doi:https://doi.org/10.1002/prac.18860340122

  • Winter C, Breitkreuz C, Lapp M (2008) Textural analysis of a late Palaeozoic coherent-pyroclastic rhyolitic dyke system near Burkersdorf (Erzgebirge, Saxony, Germany). In: Thomson K, Petford N (eds) Structure and emplacement of high-level magmatic systems. Geological Society, London, Special Publications 302(1):199–221. https://doi.org/10.1144/SP302.14

  • Wolff R, Dunkl I, Lange J-M, Tonk C, Voigt T, von Eynatten H (2015a) Superposition of burial and hydrothermal events: post-Variscan thermal evolution of the Erzgebirge, Germany. Terra Nova 27(4):292–299. https://doi.org/10.1111/ter.12159

    Article  Google Scholar 

  • Wolff R, Dunkl I, Kempe U, von Eynatten H (2015b) The age of the latest thermal overprint of tin and polymetallic deposits in the Erzgebirge, Germany: constraints from fluorite (U-Th-Sm)/He thermochronology. Econ Geol 110(8):2025–2040. https://doi.org/10.2113/econgeo.110.8.2025

    Article  Google Scholar 

  • Yardley BWD (2005) 100th anniversary special paper: metal concentrations in crustal fluids and their relationship to ore formation. Econ Geol 100(4):613–632. https://doi.org/10.2113/gsecongeo.100.4.613

    Article  Google Scholar 

  • Yardley BWD, Bodnar J (2014) Fluids in the continental crust. Geochemical Perspectives 3(1): p 127. https://doi.org/10.7185/geochempersp.3.1

  • Zhang R, Lehmann B, Seltmann R, Sun W, Li C (2017) Cassiterite U-Pb geochronology constrains magmatic-hydrothermal evolution in complex evolved granite systems: the classic Erzgebirge tin province (Saxony and Bohemia). Geology. https://doi.org/10.1130/G39634.1

  • Ziegler PA (1990) Geological atlas of Western and Central Europe, second and completely revised edition. Shell Internationale Petroleum Maatschappij, The Hague, p 239

  • Ziegler PA, Dezes P (2007) Cenozoic uplift of Variscan Massifs in the Alpine foreland: timing and controlling mechanisms. Glob Planet Chang 58(1–4):237–269. https://doi.org/10.1016/j.gloplacha.2006.12.004

    Article  Google Scholar 

  • Ziegler PA, Dezes P (2006) Crustal evolution of Western and Central Europe. Geological Society, London, Memoirs 32:43–56. https://doi.org/10.1144/GSL.MEM.2006.032.01.03

    Article  Google Scholar 

Download references

Acknowledgements

Isotope and trace element analyses were conducted at the Federal Institute for Geosciences and Natural Resources (BGR) in Hannover (Germany). Siegrid Gerlach and Monika Bockrath are warmly thanked for their help and advice during the senior author’s stay in Hannover. Further thanks are due to Hans Lorenz (BGR) for performing ICP-MS measurements. Help of Sabine Gilbricht (TU Bergakademie Freiberg - TUBAF) with MLA measurements is highly acknowledged. We greatly appreciate the comments of Jens Schneider (TUBAF) on an earlier version of the manuscript. Christin Kehrer is acknowledged for providing sample material from the ore deposit collection of the TUBAF. Matthias Bauer (TUBAF) provided a draft for the geological map of the Freiberg district (Fig. 2). Andreas Bartzsch and Roland Würkert (Helmholtz Institute Freiberg for Resource Technology) as well as Michael Magnus and team (TUBAF) are thanked for preparation of polished sections. We thank editor Bernd Lehmann, guest editor Gregor Markl, and two anonymous reviewers for their comments that helped to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Ostendorf.

Additional information

Editorial handling: G. Markl

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 57.8 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ostendorf, J., Henjes-Kunst, F., Seifert, T. et al. Age and genesis of polymetallic veins in the Freiberg district, Erzgebirge, Germany: constraints from radiogenic isotopes. Miner Deposita 54, 217–236 (2019). https://doi.org/10.1007/s00126-018-0841-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-018-0841-1

Keywords

Navigation