The shear zone-related gold mineralization at the Turmalina deposit, Quadrilátero Ferrífero, Brazil: structural evolution and the two stages of mineralization

  • Wendell Fabricio-Silva
  • Carlos Alberto Rosière
  • Bernhard Bühn
Article
  • 46 Downloads

Abstract

Turmalina is an important orogenic gold deposit located in the NW region of the Quadrilátero Ferrífero. The deposit is hosted in an Archean greenstone belt composed of ortho-amphibolites and pelites with interleaved tuffs metamorphosed under amphibolite facies conditions and intruded by a granite stock. The orebodies are controlled by WNW-ESE-trending shear zones, associated with hydrothermal alteration. Three deformation events are recognized in the Turmalina gold deposit: D1 and D2 are the result of a progressive Archean deformation under ductile conditions between 2749 ± 7 and 2664 ± 35 Ma; D3 is characterized by a transpressional event under ductile-brittle conditions with the age still unclear. The three generations of garnet observed show that Grt1 blastesis is pre- to syn-D1 and Grt2 growth during the late to post-deformation stages of the D2 event. The initial temperature (Grt1 core) is around 548–600 °C, whereas during late D2, the temperatures reached 633 °C (metamorphic peak–Grt2 rim), likely as a result of granite intrusion. The Grt3 resulted from re-equilibration under retrograde conditions. Two gold-bearing sulfide stages were identified: pyrrhotite-arsenopyrite ± löllingite ± chalcopyrite ± gold stage I precipitated below a metamorphic peak temperature of 598 ± 19 °C associated with S1 foliation (D1), and pyrrhotite-pyrite-arsenopyrite ± chalcopyrite ± gold stage II is located commonly along V3 quartz-carbonate veinlets with a temperature range between 442 ± 9 and 510 ± 30 °C. We suggest that the granite intrusion imposed an additional thermal effect that promoted further dehydration of country rocks. The Au derived mainly from a metamorphic fluid source but potentially mixed with magmatic fluids from the granite.

Keywords

Archean greenstone belt Quadrilátero Ferrífero Turmalina deposit Gold Structural evolution Sulfur isotopes 

Notes

Acknowledgements

The authors wish to acknowledge the Jaguar Mining Co. for their technical, logistic, and financial support during our research. Special thanks to Carlos Ribeiro Luiz and all technicians, helpers, and geologists in the Turmalina Mine: Williams Santos, Romulo Cruz, Carlos Michel, Alvania Augusta, Armando Filho, Lucas, and Aloma Tente. Numerous geologists and many people must be thanked for their support and discussions: Ana-Sophie Hensler, Fabrício Caxito, Atlas Corrêa-Neto, Haakon Fossen, Lydia Lobato, Jaqueline Menez, Ruy Vasconcelos, William Campos, and Maria Emília Della Giustina. We thank the Mineralium Deposita reviewers (Dr. Ridley and Dr. Micklethwaite) and the AE (Dr. Steffen Hagemann) for providing constructive and helpful comments. We also acknowledge the support of Brasilia University, UnB, which improved the conditions to do electron microprobe analyses and LA-ICP-MS.

Note: It is with a certain sense of sadness that we report the passing of Dr. Bernhard Bühn. Bernhard is a true scholar and a gentleman. He was a pioneer in the UnB’s geochronology laboratory, especially for the ICP-MS method, and left a great legacy.

Funding information

This research is financed by Brazil’s Personal Improvement Coordination of Higher Education, CAPES.

Supplementary material

126_2018_811_MOESM1_ESM.xlsx (30 kb)
ESM 1 (XLSX 29 kb)
126_2018_811_MOESM2_ESM.pdf (3.5 mb)
ESM 2 (PDF 3588 kb)

References

  1. Alkmim FF, Marshak S (1998) Transamazonian orogeny in the southern São Francisco Craton region, Minas Gerais, Brazil: evidence for Paleoproterozoic collision and collapse in the Quadrilátero Ferrífero. Precambrian Res 90:29–58CrossRefGoogle Scholar
  2. Almeida FFM (1977) O Cráton do São Francisco. Rev Bras Geosci 7:349–364Google Scholar
  3. Baltazar OF, Zucchetti M (2007) Lithofacies associations and structural evolution of the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Brazil: a review of the setting of gold deposits. Ore Geol Rev 32:471–499CrossRefGoogle Scholar
  4. Berman RG (1991) Thermobarometry using multi-equilibrium calculations: a new technique, with petrological applications. Can Mineral 29:833–855Google Scholar
  5. Brito Neves BB (2011) The Paleoproterozoic in the South-American continent: diversity in the geologic time. J S Am Earth Sci 32:270–286CrossRefGoogle Scholar
  6. Bucher K, Grapes R (2011) Metamorphic grade. In: Petrogenesis of metamorphic rocks. Springer, Berlin, pp 119–187CrossRefGoogle Scholar
  7. Bühn B, Santos RV, Dardenne MA, de Oliveira CG (2012) Mass-dependent and mass-independent sulfur isotope fractionation (δ34S and δ33S) from Brazilian Archean and Proterozoic sulfide deposits by laser ablation multi-collector ICP-MS. Chem Geol 312–313:163–176CrossRefGoogle Scholar
  8. Caddick MJ, Konopásek J, Thompson AB (2010) Preservation of garnet growth zoning and the duration of prograde metamorphism. J Petrol 51:2327–2347CrossRefGoogle Scholar
  9. Chambers LA (1982) Sulfur isotope study of a modern intertidal environment, and the interpretation of ancient sulfides. Geochim Cosmochim Acta 46:721–728CrossRefGoogle Scholar
  10. Cooke RA, O Brien PJ, Carswell DA (2000) Garnet zoning and the identification of equilibrium mineral compositions in high-pressure-temperature granulites from the Moldanubian Zone, Austria. J Metamorph Geol 18:551–570CrossRefGoogle Scholar
  11. DeWitt E, Thorman C, Ladeira E et al (2000) Origin and age of gold deposits at São Bento and Morro Velho, Brazil. 31th Internat Geol Congress, Rio de Janeiro, Brazil, CD-ROMGoogle Scholar
  12. Dorr JVN (1957) In: DNPM M (ed) Revisão da Estratigrafia Pré-cambriana do Quadrilátero Ferrífero: Brasil. Departamento Nacional de Produção Mineral, Minas Gerais 81 pGoogle Scholar
  13. Dorr JVN (1969) Physiographic, stratigraphic and structural development of the Quadrilátero Ferrífero, Minas Gerais, Brazil. Regional Geology of the Quadrilátero Ferrífero, Minas Gerais, Brazil. US Geol Surv Professional Paper 614-A. 110 pGoogle Scholar
  14. Farquhar J, Wing BA, McKeegan KD, Harris JW, Cartigny P, Thiemens MH (2002) Mass-independent sulfur of inclusions in diamond and sulfur recycling on early Earth. Science 298:2369–2372CrossRefGoogle Scholar
  15. Frizzo C, Takai V, Scarpelli W (1991) Auriferous mineralization at Pitangui, Minas Gerais. In: Ladeira EA (ed) Brazil Gold ’91. Balkema, Rotterdam, pp 579–583Google Scholar
  16. Goldfarb RJ, Groves DI, Gardoll S (2001) Orogenic gold and geologic time: a global synthesis. Ore Geol Rev 18:1–75CrossRefGoogle Scholar
  17. Groves DI, Foster RP (1993) Archean lode gold deposits. In: Foster RP (ed) Gold metallogeny and exploration. Chapman and Hall, New York, pp 63–103CrossRefGoogle Scholar
  18. Hartmann LA, Endo I, Suita MTF, Santos JOS, Frantz JC, Carneiro MA, McNaughton NJ, Barley ME (2006) Provenance and age delimitation of Quadrilátero Ferrífero sandstones based on zircon U-Pb isotopes. J Am Earth Sci 20:273–285CrossRefGoogle Scholar
  19. Heineck CA (1997) Geologia e mineralizações do Greenstone Belt Rio das Velhas na região de Mateus Leme, Minas Gerais. Dissertation, UFMG, Belo Horizonte, BrazilGoogle Scholar
  20. Inda HV, Schorscher HD, Dardenne MA et al (1984) O cráton do São Francisco e a Faixa de Dobramento Araçuaí. In: Schobbenhaus C, Campos DA, Derze GR, Asmus HE (eds) Geologia do Brasil—Texto explicativo do mapa geológico do Brasil e área oceânica adjacente. MME/DNPM, Brasília, pp 193–248Google Scholar
  21. Jaguar Mining Inc (2017) www.jaguarmining.com/operations/turmalina-gold-mine/. Accessed 17 Jun 2017
  22. Junqueira P, Lobato L, Ladeira E, Simões E (2007) Structural control and hydrothermal alteration at the BIF-hosted Raposos lode-gold deposit, Quadrilátero Ferrífero Brazil. Ore Geol Rev 32:629–650CrossRefGoogle Scholar
  23. Kretschmar U, Scott SD (1976) Phase relations involving arsenopyrite in the system Fe–As–S and their application. Can Mineral 14:364–386Google Scholar
  24. Ladeira E (1980) Geology, petrography, and geochemistry of Nova Lima Group, Quadrilátero Ferrífero, Minas Gerais, Brasil. XVII Geowiss Lateinamer Kolloq, Heidelberg, pp 47–48Google Scholar
  25. Lobato LM, Ribeiro-Rodrigues LC, Vieira FWR (2001) Brazil’s premier gold province. Part II: geology and genesis of gold deposits in the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero. Mineral Deposita 36:249–277CrossRefGoogle Scholar
  26. Lobato LM, Santos J, McNaughton N et al (2007) U–Pb SHRIMP monazite ages of the giant Morro Velho and Cuiabá gold deposits, Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Minas Gerais, Brazil. Ore Geol Rev 32:674–680CrossRefGoogle Scholar
  27. Machado N, Carneiro MA (1992) U–Pb evidence of Late Archean tectonothermal activity in the southern São Francisco shield, Brazil. Can J Earth Sci 29:2341–2346CrossRefGoogle Scholar
  28. Machado N, Noce CM, Oliveira OAB, Ladeira EA (1989) Evolução Geológica do Quadrilátero Ferrífero no Arqueano e Proterozóico Inferior com Base em Geogronologia U–Pb. In: SBd G (ed) Anais do V Simpósio de Geologia de Minas Gerais. Núcleo Minas Gerais, Belo Horizonte, pp 1–4Google Scholar
  29. Martins BS, Lobato LM, Rosière CA et al (2015) The Archean BIF-hosted Lamego gold deposit, Rio das Velhas greenstone belt, Quadrilátero Ferrífero: evidence for Cambrian structural modification of an Archean orogenic gold deposit. Ore Geol Rev 72:963–988CrossRefGoogle Scholar
  30. Mikucki EJ, Ridley JR (1993) The hydrothermal fluid of Archaean lode-gold deposits at different metamorphic grades: compositional constraints from ore and wallrock alteration assemblages. Mineral Deposita 28:469–481CrossRefGoogle Scholar
  31. Noce CM, Tassinari CG, Lobato LM (2007) Geochronological framework of the Quadrilátero Ferrífero, with emphasis on the age of gold mineralization hosted in Archean greenstone belts. Ore Geol Rev 32:500–510Google Scholar
  32. Noce CM, Machado N, Teixeira W (1998) U–Pb geochronology of gneisses and granitoids in the Quadrilátero Ferrífero (southern São Francisco Craton): age constraints for Archean and Paleoproterozoic magmatism and metamorphism. Rev Bras Geosci 28:95–102Google Scholar
  33. Oliveira MS (2012) Rochas hospedeiras e alteração hidrotermal associadas às mineralizações auríferas dos corpos Turmalina e Satinoco, mina de ouro de Turmalina, Pitangui (MG). Trabalho de conclusão de curso, Universidade Estadual de CampinasGoogle Scholar
  34. Pedrosa-Soares A, De Campos CP, Noce C et al (2011) Late Neoproterozoic-Cambrian granitic magmatism in the Araçuaí orogen (Brazil), the Eastern Brazilian Pegmatite Province and related mineral resources. Geol Soc Lond Spec Publ 350:25–51CrossRefGoogle Scholar
  35. Petrakakis K (1986) Metamorphism of high-grade gneisses from the Moldanubian Zone, Austria, with particular reference to the garnets. J Metamorph Geol 4:323–344CrossRefGoogle Scholar
  36. Renger FE, Noce CM, Romano AW, Machado N (1994) Evolução sedimentar do Supergrupo Minas: 500 Ma de registro geológico no Quadrilátero Ferrífero, Minas Gerais, Brasil. Geonomos – Rev Bras Geosci 2:1–11Google Scholar
  37. Ribeiro Y, Figueiredo e Silva RC, Lobato LM, Lima LC, Rios FJ, Hagemann SG, Cliff J (2015) Fluid inclusion and sulfur and oxygen isotope studies on quartz–carbonate–sulfide veins of the Carvoaria Velha deposit, Córrego do Sítio gold lineament, Quadrilátero Ferrífero, Minas Gerais, Brazil. Ore Geol Rev 67:11–33CrossRefGoogle Scholar
  38. Romano AW (1989) Evolution Tectonique de la région Nord-Ouest du Quadrilatère Ferrifère-Minas Gerais-Brésil. PhD Thesis, Université de Nancy I, Vandoeuvre-lès-Nancy, FranceGoogle Scholar
  39. Romano AW (2006) Programa Geologia do Brasil. Folha Pará de Minas, SE-23-Z-C-I. Escala 1:100.000 relatório final. UFMG-CPRM, Belo Horizonte. 74 ppGoogle Scholar
  40. Romano AW, Bilal E, Correa Neves JM et al (1995) O Complexo Granítico de Florestal-parte meridional do Cráton de São Francisco—primeiros dados petrográficos e geoquímicos. In: Simp Geol MG, 8. Diamantina. SBG/MG 13:86–88Google Scholar
  41. Rye RO, Luhr JF, Wasserman MD (1984) Sulfur and oxygen isotope systematics of the 1982 eruptions of El Chichón volcano, Chiapas, Mexico. J Volcanol Geotherm Res 23:109–123CrossRefGoogle Scholar
  42. Sakai H, Des Marais DJ, Ueda A, Moore JG (1984) Concentrations and isotope ratios of carbon, nitrogen and sulfur in ocean-floor basalts. Geochim Cosmochim Acta 48:2433–2441CrossRefGoogle Scholar
  43. Sasaki A, Ishihara S (1979) Sulfur isotopic composition of the magnetite-series and ilmenite-series granitoids in Japan. Contrib Mineral Petrol 68:107–115CrossRefGoogle Scholar
  44. Schorscher HD (1978) Komatiítos na estrutura “Greenstone Belt” Série Rio das Velhas, Quadrilátero Ferrífero, Minas Gerais, Brasil. XXX Congresso Brasileiro de Geologia. SBG, Recife, pp 292–293Google Scholar
  45. Seal RR (2006) Sulfur isotope geochemistry of sulfide minerals. Rev Mineral Geochem 61:633–677CrossRefGoogle Scholar
  46. Sharp ZD, Essene EJ, Kelly WC (1985) A re-examination of the arsenopyrite geothermometer: pressure considerations and applications to natural assemblages. J Miner Assoc Canada 23:517–534Google Scholar
  47. Soares MB, Corrêa-Neto AV, Zeh A, Cabral AR et al (2017) Geology of the Pitangui greenstone belt, Minas Gerais, Brazil: stratigraphy, geochronology and BIF geochemistry. Precambriam Res 291:17–41CrossRefGoogle Scholar
  48. Tassinari CCG, Mateus AM, Velásquez ME, Munhá JMU, Lobato LM, Bello RM, Chiquini AP, Campos WF (2015) Geochronology and thermochronology of gold mineralization in the Turmalina deposit, NE of the Quadrilátero Ferrífero Region, Brazil. Ore Geol Rev 67:368–381CrossRefGoogle Scholar
  49. Thorman CH, DeWitt E, Maron MA, Ladeira EA (2001) Major Brazilian gold deposits—1982 to 1999. Mineral Deposita 36:218–227CrossRefGoogle Scholar
  50. Thorpe RI, Cumming GL, Krstic D (1984) Lead isotope evidence regarding age of gold deposits in the Nova Lima district, Minas Gerais, Brazil. Rev Bras Geosci 14:147–152Google Scholar
  51. Tomkins AG (2013) On the source of orogenic gold. Geology 41:1255–1256CrossRefGoogle Scholar
  52. Tuccillo ME, Essene EJ, Van Der Pluijm BA (1990) Growth and retrograde zoning in garnets from high-grade, metapelites: implications for pressure-temperature paths. Geology 18:839–842CrossRefGoogle Scholar
  53. Velasquez David ME (2011) Evolução Termocronológica e Metalogenética da Mineralização Aurífera do Depósito Turmalina, Quadrilátero Ferrífero, Minas Gerais. PhD Thesis, Institute of Geosciences, University of São PauloGoogle Scholar
  54. Vial D, Abreu G, Schubert G, Ribeiro-Rodrigues L (2007a) Smaller gold deposits in the Archean Rio das Velhas greenstone belt, Quadrilátero Ferrífero, Brazil. Ore Geol Rev 32:651–673CrossRefGoogle Scholar
  55. Vial D, Duarte B, Fuzikawa K, Vieira M (2007b) An epigenetic origin for the Passagem de Mariana gold deposit, Quadrilátero Ferrífero, Minas Gerais, Brazil. Ore Geol Rev 32:596–613CrossRefGoogle Scholar
  56. Yardley BWD (1977) An empirical study of diffusion in garnet. Am Mineral 62:793–800Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Universidade de BrasíliaBrasíliaBrazil

Personalised recommendations