Mineralium Deposita

, Volume 53, Issue 7, pp 895–902 | Cite as

Meta-evaporite in the Carajás mineral province, northern Brazil

  • Walter Riehl
  • Alexandre Raphael Cabral


Evidence for connecting evaporite-sourced high-salinity fluids with iron-oxide–copper–gold (IOCG) deposits in the Carajás mineral province has solely been based on boron-isotope compositions of tourmaline. Presence of meta-evaporitic rocks remains unrecognised. Here, we report laminated albitite, tourmalinite and banded albite–phlogopite rock, intercepted by exploratory drilling in a clastic metasedimentary sequence. These rocks represent evaporite precursors. Their location in the copper–gold prospects Açaí and Angélica, in the westernmost part of the Carajás mineral province, indicates that (i) evaporite-sourced fluids were regional and (ii) evaporite-bearing metasedimentary sequences may have been an important source of high-salinity fluids and/or sulfur for the IOCG deposits of the Carajás mineral province.



Dr. Mônica Elizetti de Freitas kindly assisted us in carrying out reconnaissance EDS work at CDTN (Centro de Desenvolvimento da Tecnologia Nuclear). Two reviewers, Dr. Santos and Dr. Buick, are thanked for their thoughtful comments that helped to improve the manuscript. The diligent editorial handling of Dr. Hagemann and Dr. Lehmann are gratefully acknowledged.

Supplementary material

126_2018_810_MOESM1_ESM.pdf (3.2 mb)
ESM 1 (PDF 3270 kb)


  1. Barros CE de M, Barbey P (1998) A importância da granitogênese tardi-Arqueana (2.5 Ga) na evolução tectono-metamórfica da Província Mineral de Carajás—o complexo granítico Estrela e sua auréola de contato. Revista Brasileira de Geociências 28:513–522CrossRefGoogle Scholar
  2. Barton MD, Johnson DA (1996) Evaporitic-source model for igneous-related Fe oxide–(REE–Cu–Au–U) mineralization. Geology 24:259–262CrossRefGoogle Scholar
  3. Beisiegel V de R, Bernardelli AL, Drummond NF, Ruff AW, Tremaine JW (1973) Geologia e recursos minerais da Serra dos Carajás. Revista Brasileira de Geociências 3:215–242Google Scholar
  4. Cabral AR, Bühn B, Gomes AAS Jr, Galbiatti HF, Lehmann B, Halder S (2017) Multiple sulfur isotopes from the Neoarchaean Serra Sul black shale, Carajás mineral province, northern Brazil. J S Am Earth Sci 79:377–383CrossRefGoogle Scholar
  5. Chen H (2013) External sulphur in IOCG mineralization: implications on definition and classification of the IOCG clan. Ore Geol Rev 51:74–78CrossRefGoogle Scholar
  6. Chiaradia M, Banks D, Cliff R, Marschik R, de Haller A (2006) Origin of fluids in iron oxide–copper–gold deposits: constraints from δ37Cl, 87Sr/86Sri and Cl/Br. Miner Deposita 41:565–573CrossRefGoogle Scholar
  7. Cook NDJ, Ashley PM (1992) Meta-evaporite sequence, exhalative chemical sediments and associated rocks in the Proterozoic Willyama Supergroup, South Australia: implications for metallogenesis. Precambrian Res 56:211–226CrossRefGoogle Scholar
  8. Dardenne MA, Schobbenhaus C (2001) Metalogênese do Brasil. Editora Universidade de Brasília, Brasília, 392 pGoogle Scholar
  9. DOCEGEO, Equipe–Distrito Amazônia (1988) Revisão litoestratigráfica da Província Mineral de Carajás. XXXV Congresso Brasileiro de Geologia, Anexo. Sociedade Brasileira de Geologia, Belém, pp 11–56Google Scholar
  10. Eugster HP (1985) Oil shales, evaporites and ore deposits. Geochim Cosmochim Acta 49:619–635CrossRefGoogle Scholar
  11. Frietsch R, Tuisku P, Martinsson O, Perdahl J-A (1997) Early Proterozoic Cu–(Au) and Fe ore deposits associated with regional Na–Cl metasomatism in northern Fennoscandia. Ore Geol Rev 12:1–34CrossRefGoogle Scholar
  12. Grainger CJ, Groves DI, Tallarico FHB, Fletcher IR (2008) Metallogenesis of the Carajás mineral province, southern Amazon craton, Brazil: varying styles of Archean through Paleoproterozoic to Neoproterozoic base- and precious-metal mineralization. Ore Geol Rev 33:451–489CrossRefGoogle Scholar
  13. Groves DI, Bierlein FP, Meinert LD, Hitzman MW (2010) Iron oxide copper-gold (IOCG) deposits through earth history: implications for origin, lithospheric setting, and distinction from other epigenetic iron oxide deposits. Econ Geol 105:641–654CrossRefGoogle Scholar
  14. Hammerli J, Spandler C, Oliver NHS, Sossi P, Dipple GM (2015) Zn and Pb mobility during metamorphism of sedimentary rocks and potential implications for some base metal deposits. Miner Deposita 50:657–664Google Scholar
  15. Haynes DW, Cross KC, Bills RT, Reed MH (1995) Olympic Dam ore genesis: a fluid-mixing model. Econ Geol 90:281–307CrossRefGoogle Scholar
  16. Henry DJ, Sun H, Slack JF, Dutrow BL (2008) Tourmaline in meta-evaporites and highly magnesian rocks: perspectives from Namibian tourmalinites. Eur J Mineral 20:889–904CrossRefGoogle Scholar
  17. Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of Proterozoic iron oxide (Cu–U–Au–REE) deposits. Precambrian Res 58:241–287CrossRefGoogle Scholar
  18. Holland HD (1972) Granites, solutions, and base metal deposits. Econ Geol 67:281–301CrossRefGoogle Scholar
  19. Ilton ES, Eugster HP (1990) Partitioning of base metals between silicates, oxides, and a chloride-rich hydrothermal fluid. Part 1. Evaluation of data derived from experimental and natural assemblages: in Fluid-Mineral Interaction: A Tribute to H.P. Eugster, ed. Spencer R.J., Chou I-M. The Geochemical Society, Special Publication 2:157–169Google Scholar
  20. Leake BE, Farrow CM, Townend R (1979) A pre-2000 Myr old granulite facies metamorphosed evaporite from Caraiba, Brazil? Nature 277:49–50CrossRefGoogle Scholar
  21. Macambira, EMB, Vale, AG (1997) São Félix do Xingu: folha SB.22-Y-B, Estado do Pará, escala 1: 250.000. Texto Explicativo. CPRM, Programa Levantamentos Geológicos Básicos do Brasil (PLGB), Brasília, 344 pGoogle Scholar
  22. Machado N, Lindenmayer Z, Krogh TE, Lindenmayer D (1991) U–Pb geochronology of Archean magmatism and basement reactivation in the Carajás area, Amazon shield, Brazil. Precambrian Res 49:329–354CrossRefGoogle Scholar
  23. Marschik R, Mathur R, Ruiz J, Leveille RA, de Almeida AJ (2005) Late Archean Cu–Au–Mo mineralization at Gameleira and Serra Verde, Carajás Mineral Province, Brazil: constraints from Re–Os molybdenite ages. Miner Deposita 39:983–991CrossRefGoogle Scholar
  24. Moine B, Sauvan P, Jarousse J (1981) Geochemistry of evaporite-bearing series: a tentative guide for the identification of metaevaporites. Contrib Mineral Petrol 76:401–412CrossRefGoogle Scholar
  25. Pal DC, Trumbull RB, Wiedenbeck M (2010) Chemical and boron isotope compositions of tourmaline from the Jaduguda U (–Cu–Fe) deposit, Singhbhum shear zone, India: implications for the sources and evolution of mineralizing fluids. Chem Geol 277:245–260CrossRefGoogle Scholar
  26. Palmer MR, Slack JF (1989) Boron isotopic composition of tourmaline from massive sulfide deposits and tourmalinites. Contrib Mineral Petrol 103:434–451CrossRefGoogle Scholar
  27. Pereira RMP, Rosière CA, Santos JOS, Lobato LM, Figueiredo e Silva RC, McNaughton NJ (2009) Unidade Caninana: sequência clástica Paleoproterozóica revelada por datação U–Pb em zircões detríticos da província mineral Carajás. XI Simpósio de Geologia da Amazônia, 4 pGoogle Scholar
  28. Plimer IR (1994) Strata-bound scheelite in meta-evaporites, Broken Hill, Australia. Econ Geol 89:423–437CrossRefGoogle Scholar
  29. Schlegel TU, Wagner T, Boyce A, Heinrich CA (2017) Amagmatic source of hydrothermal sulfur for the Prominent Hill deposit and associated prospects in the Olympic iron oxide copper-gold (IOCG) province of South Australia. Ore Geol Rev 89:1058–1090CrossRefGoogle Scholar
  30. Serdyuchenko DP (1975) Some Precambrian scapolite-bearing rocks evolved from evaporites. Lithos 8:1–7CrossRefGoogle Scholar
  31. Slack JF, Herriman N, Barnes RG, Plimer IR (1984) Stratiform tourmalinites in metamorphic terranes and their geologic significance. Geology 12:713–716CrossRefGoogle Scholar
  32. Soares ADV, Bernardelli AL, Medeiros Filho CA, de Bastos JME, Martins LPB, Lourenço RS (1988) Geologia regional das cabeceiras do Igarapé Aquiri, extremo oeste da Província Mineral de Carajás (PA). Anais do XXXV Congresso Brasileiro de Geologia, Belém, Pará 6:2704–2712Google Scholar
  33. Tallarico FHB, Figueiredo BR, Groves DI, Kositcin N, McNaughton NJ, Fletcher IR, Rego JL (2005) Geology and SHRIMP U–Pb geochronology of the Igarapé Bahia deposit, Carajás copper–gold belt, Brazil: an Archean (2.57 Ga) example of iron-oxide Cu–Au–(U–REE) mineralization. Econ Geol 100:7–28Google Scholar
  34. Teixeira MFB, Dall’Agnol R, Santos JOS, Martins de Sousa LA, Lafon J-M (2017) Geochemistry, geochronology and Nd isotopes of the Gogó da Onça granite: a new Paleoproterozoic A-type granite of Carajás Province, Brazil. J S Am Earth Sci 80:47–65CrossRefGoogle Scholar
  35. Trendall AF, Basei MAS, de Laeter JR, Nelson DR (1998) SHRIMP zircon U–Pb constraints on the age of the Carajás Formation, Grão Pará Group, Amazon craton. J S Am Earth Sci 11:265–277CrossRefGoogle Scholar
  36. Vasquez ML, Macambira MJB, Armstrong RA (2008) Zircon geochronology of granitoids from the western Bacajá domain, southeastern Amazonian craton, Brazil: Neoarchean to Orosirian evolution. Precambrian Res 161:279–302CrossRefGoogle Scholar
  37. Warren JK (2000) Evaporites, brines and base metals: low-temperature ore emplacement controlled by evaporite diagenesis. Aust J Earth Sci 47:179–208CrossRefGoogle Scholar
  38. Warren JK (2016) Meta-evaporites. In: Evaporites: a geological compendium. Springer, pp 1375-1468Google Scholar
  39. Williams PJ, Barton MD, Johnson DA, Fontboté L, de Haller A, Mark G, Oliver NH, Marschik R (2005) Iron oxide–copper–gold deposits: geology, space-time distribution, and possible modes of origin. Economic Geology, 100th Anniversary Volume, 371–405Google Scholar
  40. Xavier RP, Wiedenbeck M, Trumbull RB, Dreher AM, Monteiro LVS, Rhede D, de Araújo CEG, Torresi I (2008) Tourmaline B-isotopes fingerprint marine evaporites as the source of high-salinity ore fluids in iron oxide–copper–gold deposits, Carajás Mineral Province (Brazil). Geology 36:743–746Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Saga ConsultoriaAv. Cristovão Colombo 519, sala 1202, FuncionáriosBelo HorizonteBrazil
  2. 2.Centro de Pesquisa Professor Manoel Teixeira da Costa, Instituto de GeociênciasUniversidade Federal de Minas Gerais (UFMG)Belo HorizonteBrazil
  3. 3.Centro de Desenvolvimento da Tecnologia Nuclear (CDTN)Belo HorizonteBrazil

Personalised recommendations