Skip to main content
Log in

Formation conditions and REY enrichment of the 2060 Ma phosphorus mineralization at Schiel (South Africa): geochemical and geochronological constraints

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Rocks of the rare-earth element (REY)-enriched apatite deposit in the eastern part of the Schiel Alkaline Complex (SAC; Southern Marginal Zone, Limpopo Belt) were studied for their whole-rock and mineral chemistry, REY mineral distribution and geochronology. Apart from phoscorite (sensu lato), pyroxenite and various syenitic rock types with quite variable apatite contents display P-REY enrichments. Field observations, mineralogical composition as well as major and trace element chemistry of soils make it possible to constrain the distribution of the hidden P-REY-rich rock types in the apatite deposit. Uranium-lead ages of zircon from phoscorite (sensu lato) and syenite are in the range of 2.06–2.05 Ga. Samarium-neodymium (εNd(t) −8.6 to −6.0) and in part Rb-Sr (87Sr/86Sr(t) 0.70819–0.70859) isotope data for whole-rock samples and mineral separates indicate an origin from an isotopically enriched and slightly variable source. Fluorapatite, early allanite and titanite are the main REY carriers at Schiel. Fluorapatite dominates the REY budget of pyroxenite and phoscorite, whereas early allanite hosts most of the REY in syenite. Three apatite types are distinguished based on their occurrence in the rocks, REYtotal contents and colouration in cathodoluminescence microscopy. Magmatic apatite in pyroxenite and in phoscorite (sensu lato) as well as early stage type I/II apatite in syenitic rocks have moderate to high REYtotal abundances (up to 3.2 wt%) with the mineral enriched in light REE. Early ferriallanite-(Ce) is strongly enriched in light REE and shows very high REYtotal values (13.7–26.4 wt%), while late allanite has lower REYtotal concentrations (6.9–14.9 wt%). Titanite is abundant in most syenitic rocks (REYtotal 1.7–6.4 wt%); chevkinite-(Ce) occurs locally and contributes to an REY enrichment in contact aureoles between syenite and different lithologies. Apatite-enriched rocks in the SAC in part contain significantly higher REYtotal concentrations in apatite grains compared to those in apatite-mineralized pyroxenite, phoscorite and carbonatite from Phalaborwa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bardossy G, Aleva GJJ (1990) Lateritic bauxites. Dev Econ Geol 27. Elsevier, Amsterdam, p 639

    Google Scholar 

  • Barton JM, du Toit MC, van Reenen DD, Ryan B (1983) Geochronical studies in the southern marginal zone of the Limpopo mobile belt, southern Africa. Spec Publ Geol Soc S Afr 8:55–64

    Google Scholar 

  • Barton JM, Doig R, Smith CB, Bohlender F, van Reenen DD (1992) Isotopic and REE characteristics of the intrusive charno-enderbite and enderbite geographically associated with the Matok Pluton, Limpopo Belt, southern Africa. Precambrian Res 55:452–467

    Google Scholar 

  • Barton JM, Holzer L, Kamber B, Doig R, Kramers JD, Nyfeler D (1994) Discrete metamorphic events in the Limpopo belt, southern Africa: implications for the application of P-T pathsin complex metamorphic terrains. Geology 22(11):1035–1038. https://doi.org/10.1130/0091-7613(1994)022<1035:DMEITL>2.3.CO;2

    Article  Google Scholar 

  • Barton JM, Barton ES, Smith CB (1996) Petrography, age and origin of the Schiel alkaline complex, northern Transvaal, South Africa. J Afr Earth Sci 22(2):133–145. https://doi.org/10.1016/0899-5362(96)00005-X

    Article  Google Scholar 

  • Barton JM, Klemd R, Zeh A, (2006) The Limpopo Belt: a result of Archean to Proterozoic, Turkic-type orogenesis? In: Reimold WU, Gibson RL (eds) Processes on the Early Earth: Geol Soc Amer Spec Pap, 405 pp 315–331

  • Basu NK, Mayila A (1986) Petrographic and chemical characteristics of the Panda Hill carbonatite complex, Tanzania. J Afr Earth Sci 5:589–598

    Google Scholar 

  • Behnsen H (2013) Rare earth element investigations on the Schiel Alkaline Complex, South Africa, M.Sc thesis, University of Erlangen, Germany, pp 99

  • Belousova EA, Griffin WL, O’Reilly SY, Fisher NI (2002) Apatite as an indicator mineral for mineral exploration: trace-element compositions and their relationship to host rock type. J Geochem Expl 76(1):45–69. https://doi.org/10.1016/S0375-6742(02)00204-2

    Article  Google Scholar 

  • Bowie SHU, Horne JET (1953) Cheralite, a new mineral ofthe monazite group. Mineral Mag 30(221):93–99. https://doi.org/10.1180/minmag.1953.030.221.02

    Article  Google Scholar 

  • Braun J-J, Pagel M, Muller J-P, Bilong P, Michard A, Guillet B (1990) Cerium anomalies inlateritic profiles. Geochim Cosmochim Acta 54(3):781–795. https://doi.org/10.1016/0016-7037(90)90373-S

    Article  Google Scholar 

  • Coetzee H (1993) Interpretation of an airborne radiometric survey of the Schiel Complex, using the ternary colour mapping technique. Unpublished Report Geol Sur S Afr 1993-0005, pp 38

  • Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks. George, Allen and Unwin, London. https://doi.org/10.1007/978-94-017-3373-1

    Book  Google Scholar 

  • Dawson JB, Hinton RW (2003) Trace-element content and partitioning in calcite, dolomite and apatite in carbonatite, Phalaborwa, South Africa. Mineral Mag 67(5):921–930. https://doi.org/10.1180/0026461036750151

    Article  Google Scholar 

  • De Toledo MCM, Lenharo SLR, Ferrari VC, Fontan F, Leroy G (2004) The compositional evolution of apatite in the weathering profile of the Catalão I alkaline-carbonatitic complex, Goias, Brazil. Can Mineral 42(4):1139–1158. https://doi.org/10.2113/gscanmin.42.4.1139

    Article  Google Scholar 

  • Decrée S, Boulvais P, Tack L, Andre L, Baele J-M (2016) Fluorapatite in carbonatite-related phosphate deposits: the caseof the Matongo carbonatite (Burundi). Mineral Deposita 51(4):453–466. https://doi.org/10.1007/s00126-015-0620-1

    Article  Google Scholar 

  • DePaolo DJ (1988) Neodymium isotope geochemistry: an introduction. Minerals and rocks 20. Springer-Verlag, New York, p 187. https://doi.org/10.1007/978-3-642-48916-7

    Book  Google Scholar 

  • Dohrmann R (2006) Cation exchange capacity methodology I: an efficient model for the detection of incorrect cation exchange capacity and exchangeable cation results. Appl Clay Sci 34(1-4):31–37. https://doi.org/10.1016/j.clay.2005.12.006

    Article  Google Scholar 

  • Du Toit MC (1979) Die geologie en struktuur van die gebiede Levubu en Bandelierkorp in Noord-Transvaal. Ph. D thesis, Rand Afrikaans University, Johannesburg, South Africa, pp 241

  • Eriksson SC (1989) Phalaborwa: a saga of magmatism, metasomatism and miscibility. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 221–254

    Google Scholar 

  • Fandrich R, Gu Y, Burrows D, Moeller K (2007) Modern SEM-based mineral liberation analysis. Int J Miner Process 84(1-4):310–320. https://doi.org/10.1016/j.minpro.2006.07.018

    Article  Google Scholar 

  • Gerdes A, Zeh A (2006) Combined U–Pb and Hf isotope LA-(MC-)ICP-MS analyses of detrital zircons: comparison with SHRIMP and new constraints for the provenance and age of an Armorican metasediment in Central Germany. Earth Planet Sci Lett 249(1-2):47–61. https://doi.org/10.1016/j.epsl.2006.06.039

    Article  Google Scholar 

  • Gerdes A, Zeh A (2009) Zircon formation versus zircon alteration – new insights from combined U–Pb and Lu–Hf in-situ LA–ICP–MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt. Chem Geol 261(3-4):230–243. https://doi.org/10.1016/j.chemgeo.2008.03.005

    Article  Google Scholar 

  • Gieré R, Sorensen SS (2004) Allanite and other REE-rich epidote-group minerals. Rev Mineral Geochem 56(1):431–493. https://doi.org/10.2138/gsrmg.56.1.431

    Article  Google Scholar 

  • Graupner T, Opperman R, Tongu EL (2014) Rare-earth elements. In: Buchholz P (ed) Investor’s and procurement guide South Africa, part 1: heavy minerals, rare earth elements, antimony. DERA, label D Druck + Medien GmbH, Berlin, pp 73–116

    Google Scholar 

  • Graupner T, Mühlbach C, Schwarz-Schampera U, Henjes-Kunst F, Melcher F, Terblanche H (2015) Mineralogy of high-field-strength elements (Y, Nb, REE) in the world-class Vergenoeg fluorite deposit, South Africa. Ore Geol Rev 64:583–601. https://doi.org/10.1016/j.oregeorev.2014.02.012

    Article  Google Scholar 

  • Gu Y (2003) Automated scanning electron microscope based mineral liberation analysis. An introduction to JKMRC/FEI mineral liberation analyser. J Miner Mater Charact Eng 2:33–41

    Google Scholar 

  • Jacobsen SB, Wasserburg GJ (1984) Sm-Nd evolution of chondrites and achondrites. II. Earth Planet Sci Lett 67: 137-150

  • Jiang N (2006) Hydrothermal alteration of chevkinite-(Ce) in the Shuiquangou syenitic intrusion, northern China. Chem Geol 227(1-2):100–112. https://doi.org/10.1016/j.chemgeo.2005.09.004

    Article  Google Scholar 

  • Joubert P (1964) The geology of the apatite occurrence and associated rocks on Shiel 54 LT, Sibasa District. Unpubl. Rep. Geological Survey South Africa 1964–0043, pp 62

  • Kemner F (2013) Petrology of the Schiel Alkaline Complex, Southern Marginal Zone of the Limpopo belt, South Africa. M.Sc thesis, GeoZentrum Nordbayern, University of Erlangen, Germany, pp 84

  • Kingsnorth DJ (2016) Curtin-IMCOA Rare Earth Quarterly Bulletin #13. Curtin Graduate School of Business. Ppt-presentation 20.01.2016, pp 43

  • Kramers JD, McCourt S, van Reenen DD (2006) The Limpopo Belt. In: Johnson MR, Anhaeusser CR, Thomas RJ (eds) The geology of South Africa. Geol SocS Afr, Johannesburg/Council for Geoscience, Pretoria, pp 209–236

    Google Scholar 

  • Krasnova NI, Petrov TG, Balaganskaya EG, Garcia D, Moutte J, Zaitsev AN, Wall F (2004) Introduction to phoscorites: occurrence, composition, nomenclature and petrogenesis. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. The mineral Soc Series 10. Black Bear Press, Cambridge, pp 45–74

    Google Scholar 

  • Kreissig K, Holzer L, Frei R, Villa IM, Kramers JD, Kröner A, Smit CA, van Reenen DD (2001) Geochronology of the Hout River shear zone and the metamorphism in the Southern Marginal Zone of the Limpopo Belt, Southern Africa. Precambrian Res 109(1-2):145–173. https://doi.org/10.1016/S0301-9268(01)00147-4

    Article  Google Scholar 

  • Laurent O, Zeh A (2015) A linear Hf isotope-age array despite different granitoid sources and complex Archean geodynamics: example from the Pietersburg block (South Africa). Earth Planet Sci Lett 430:326–338. https://doi.org/10.1016/j.epsl.2015.08.028

    Article  Google Scholar 

  • Linthout K (2007) Tripartite division of the system 2REEPO4–CaTh(PO4)2–2ThSiO4, discreditation of brabantite, an recognition of cheralite as the name for members dominated by CaTh(PO4)2. Can Mineral 45(3):503–508. https://doi.org/10.2113/gscanmin.45.3.503

    Article  Google Scholar 

  • Lottermoser B (1989) Rare earth elements and ore formation process. Unpubl Thesis, University of Newcastle, New South Wales, Australia, pp 308

  • Lubala RT, Frick C, Rogers HJJ, Walraven F (1994) Petrogenesis of syenites and granites of the Schiel Alkaline Complex, Northern Transvaal, South Africa. J Geol 102(3):307–316. https://doi.org/10.1086/629673

    Article  Google Scholar 

  • Marks MAW, Wenzel T, Whitehouse MJ, Loose M, Zack T, Barth M, Worgard L, Krasz V, Eby GN, Stosnach H, Markl G (2012) The volatile inventory (F, cl, Br, S, C) of magmatic apatite: an integrated analytical approach. Chem Geol 291:241–255. https://doi.org/10.1016/j.chemgeo.2011.10.026

    Article  Google Scholar 

  • Mason R (1973) The Limpopo Belt—southern Africa. Phil Trans R Soc Lond A 273:463–485

    Article  Google Scholar 

  • McDonough WF, Sun SS (1995) The composition of the earth. Chem Geol 120(3-4):223–253. https://doi.org/10.1016/0009-2541(94)00140-4

    Article  Google Scholar 

  • Milani L, Bolhar R, Frei D, Harlov DE, Samuel VO (2017) Light rare earth element systematics as a tool for investigating the petrogenesis of phoscorite-carbonatite associations, as exemplified by the Phalaborwa complex, South Africa. Mineral Deposita 52:1105–1125

    Article  Google Scholar 

  • Miyashiro A (1978) Nature of alkalic volcanic rock series. Contrib Mineral Petrol 66(1):91–104. https://doi.org/10.1007/BF00376089

    Article  Google Scholar 

  • Morteani G, Preinfalk (1996) REE distribution and REE carriers in laterites formed on the alkaline complexes of Araxá and Catalão (Brazil). In: Jones AP et al (eds) Rare Earth Minerals: chemistry, origin and ore deposits. The Mineral Soc Series 7. Chapman and Hall, London, pp 227–255

    Google Scholar 

  • Neuser RD, Bruhn F, Götze J, Habermann D, Richter DK (1995) Cathodoluminescence: methods and application. Zbl Geo Pal 1(2):287–306

    Google Scholar 

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostand Newslett 21(1):115–144. https://doi.org/10.1111/j.1751-908X.1997.tb00538.x

    Article  Google Scholar 

  • Petrik I, Broska I, Lipka J, Siman P (1995) Granitoid allanite-(Ce) substitution relations, redox conditions and REE distributions (on an example of I-type granitoids, Western Carpathians, Slovakia). Geol Carpath 46:79–94

    Google Scholar 

  • Piccoli PM, Candela PA (2002) Apatite in igneous systems. In: Kohn MJ, et al (eds) Phosphates: geochemical, geobiological, and materials importance. Rev Mineral Geochem 48:255–292

  • Pouchou J-L, Pichoir F (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP” in microprobe analysis. In: Heinrich KFJ, Newbury DE (eds) Electron probe quantitation. Plenum Press, New York, pp 31–75. https://doi.org/10.1007/978-1-4899-2617-3_4

    Chapter  Google Scholar 

  • Prins D, Van Graan SJ, Du Rand HGJ, Oberholzer JW (1981) Schiel-phosphate deposit: an order of magnitude feasibility study. Technocom Mineral Development Services (PTY) LTD

  • Schulz B, Klemd R, Brätz H (2006) Host rock compositional controls on zircon trace element signatures in metabasites from the Austroalpine basement. Geochim Cosmochim Acta 70(3):697–710. https://doi.org/10.1016/j.gca.2005.10.001

    Article  Google Scholar 

  • Smit CA, Roering C, van Reenen DD (1992) The structural framework of the southern margin of the Limpopo Belt, South Africa. Precambrian Res 55(1-4):51–67. https://doi.org/10.1016/0301-9268(92)90014-F

    Article  Google Scholar 

  • Stettler EH, Coetzee H, Rogers HJJ, Lubala RT (1993) The Schiel Alkaline Complex: geological setting and geophysical investigation. S Afr J Geol 96:96–107

    Google Scholar 

  • Stevens G, van Reenen D (1992) Partial melting and the origin of metapelitic granulites in the Southern Marginal Zone of the Limpopo Belt, South Africa. Precambrian Res 55(1-4):303–319. https://doi.org/10.1016/0301-9268(92)90030-R

    Article  Google Scholar 

  • Torab FM, Lehmann B (2007) Magnetite–apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology. Mineral Mag 71(3):347–363. https://doi.org/10.1180/minmag.2007.071.3.347

    Article  Google Scholar 

  • Verwoerd WJ (1986) Mineral deposits associated with carbonatites and alkaline rocks. In: Anhaeusser CR, Maske S (eds) Mineral deposits of Southern Africa. Geol Soc S Afr, Johannesburg, pp 2173–2191

    Google Scholar 

  • Verwoerd W, du Toit M (2006) The Phalaborwa and Schiel complexes. In: Johnson MR et al (eds) The geology of South Africa. Geol SocS Afr, Johannesburg/Council for Geoscience, Pretoria, pp 291–300

    Google Scholar 

  • Viljoen VE (1966) Volledige geologiese verslag op die Schiel fosfaatvorkoorkoms. Unpublished FOSKOR Report, pp 38

  • Vlach S, Gualda G (2007) Allanite and chevkinite in A-type granites and syenites of the Graciosa Province, southern Brazil. Lithos 97(1-2):98–121. https://doi.org/10.1016/j.lithos.2006.12.003

    Article  Google Scholar 

  • Walraven F, Frick C, Lubala RT (1992) Pb-isotope geochronology of the Schiel Complex, northern Transvaal, South Africa. J Afr Earth Sci 15(1):103–110. https://doi.org/10.1016/0899-5362(92)90011-Z

    Article  Google Scholar 

  • Walters AS, Goodenough KM, Hughes HSR, Roberts NMW, Gunn AG, Rushton J, Lacinska A (2013) Enrichment of rare earth elements during magmatic and post-magmatic processes: a case study from the Loch Loyal Syenite Complex, northern Scotland. Contrib Mineral Petrol 166(4):1177–1202. https://doi.org/10.1007/s00410-013-0916-z

    Article  Google Scholar 

  • Watanabe Y (2008) Rare-earth: resource exploration and development. In: Nakamura M (ed) Rare Metals. National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, pp 10–11

    Google Scholar 

  • Webster JD, Piccoli PM (2015) Magmatic apatite: a powerful, yet deceptive, mineral. Elements 11(3):177–182. https://doi.org/10.2113/gselements.11.3.177

    Article  Google Scholar 

  • Wilson M (1989) Igneous petrogenesis. Unwin Hyman, London. https://doi.org/10.1007/978-1-4020-6788-4

    Book  Google Scholar 

  • Wilson MGC (1998) Copper. In: Wilson MGC, Anhaeusser CR (eds) The mineral resources of South Africa. Handbook 16. Council for Geoscience, Pretoria, pp 209–227

    Google Scholar 

  • Wu FY, Yang YH, Bulakh AG, Bellatreccia F, Mitchell RH, Li QL (2010) In situ U–Pb and Nd–Hf–(Sr) isotopic investigations of zirconolite and calzirtite. Chem Geol 277:178–195

    Article  Google Scholar 

  • Wu FY, Yang YH, Li QL, Mitchell RH, Dawson JB, Brandl G, Yuhara M (2011) In situ determination of U–Pb ages and Sr–Nd–Hf isotopic constraints on the petrogenesis of the Phalaborwa carbonatite complex, South Africa. Lithos 127:309–322

    Article  Google Scholar 

  • Xie H, Kröner A, Brandl G, Wan Y (2017) Two orogenic events separated by 2.6 Ga mafic dykes in the Central Zone, Limpopo Belt, Southern Africa. Precambrian Res 289:129–141. https://doi.org/10.1016/j.precamres.2016.11.009

    Article  Google Scholar 

  • Zeh A, Gerdes A (2012) U–Pb and Hf isotope record of detrital zircons from gold-bearing sediments of the Pietersburg Greenstone belt (South Africa)—is there a common provenance with the Witwatersrand Basin? Precambrian Res 204–205:46–56

    Article  Google Scholar 

  • Zenzén N (1916) Determinations of the power of refraction of allanites. Acta Univ Upsaliensis Bull Geol Inst 15:61–76

    Google Scholar 

Download references

Acknowledgements

The permission of the Chief of the area to carry out field campaigns at Schiel is greatly acknowledged. Fabian Kemner, Malte Junge, Andzani Ndhukwani and local field guides are thanked for help during field work in the Schiel Alkaline Complex. The authors are grateful to Oscar Laurent for providing pyroxenite samples and for discussion. Monika Bockrath, Siegrid Gerlach, Christian Wöhrl, Hans Lorenz and Nikola Koglin are acknowledged for analytical assistance at the BGR. Hiltrud Müller-Sigmund (University of Freiburg) and colleagues kindly performed mineral separation. This paper contributes to the project RoStraMet of the BGR. Two anonymous reviewers of Mineralium Deposita and the handling editor Hartwig Frimmel provided useful comments, which considerably improved the manuscript.

Funding

Reiner Klemd thanks the BGR (grant 203-10047988) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torsten Graupner.

Additional information

Editorial handling: H. Frimmel

Electronic supplementary material

ESM 1

(DOCX 17 kb)

ESM Table S1

(DOCX 50 kb)

ESM Table S2

(DOCX 41 kb)

ESM Table S3

(DOCX 39 kb)

ESM Table S4

(DOCX 61 kb)

ESM Table S5

(DOCX 54 kb)

ESM Table S6

(DOCX 62 kb)

ESM Table S7

(DOCX 54 kb)

ESM Fig. S1

Regional geology and main tectonic features of the Limpopo Mobile Belt (modified after Kramers et al. (2006)). The Schiel Alkaline Complex is situated within the Southern Marginal Zone (SMZ) in close contact to the prominent Hout River Shear Zone (JPEG 11848 kb)

ESM Fig. S2

Nomenclature diagram for the system 2REEPO4–CaTh(PO4)2–2ThSiO4 showing the endmember proportions of the monazite and thorite found in the SAC magmatites. Cation proportions were calculated on the basis of eight atoms of oxygen, H2O-free. Endmember proportions were calculated according to Linthout (2007) (JPEG 2664 kb)

ESM Fig. S3

X-ray diffraction of oriented mounts of clay fractions of air-dry (AD, black) and ethylene glycol solvated (EG, blue) samples. a Sample Sch4. b Sample Sch5 (JPEG 864 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Graupner, T., Klemd, R., Henjes-Kunst, F. et al. Formation conditions and REY enrichment of the 2060 Ma phosphorus mineralization at Schiel (South Africa): geochemical and geochronological constraints. Miner Deposita 53, 1117–1142 (2018). https://doi.org/10.1007/s00126-018-0791-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-018-0791-7

Keywords

Navigation