Subsurface deposition of Cu-rich massive sulphide underneath a Palaeoproterozoic seafloor hydrothermal system—the Red Bore prospect, Western Australia

Abstract

The Proterozoic Bryah and Yerrida basins of Western Australia contain important base and precious metal deposits. Here we present microtextural data, trace element and S isotope analyses of massive sulphide mineralisation hosted in Palaeoproterozoic subvolcanic rocks (dolerite) recently discovered at Red Bore. The small-scale high-grade mineralisation, which extends from the sub-surface to at least 95 m down-hole, is dominated by massive chalcopyrite and contains minor pyrite and Bi-Te-(Se) phases. Massive sulphide mineralisation is surrounded by discontinuous brecciated massive magnetite, and a narrow (< 2 m) alteration halo, which suggests very focussed fluid flow. Laser ablation ICP-MS analyses indicate that chalcopyrite contains up to 10 ppm Au and in excess of 100 ppm Ag. Sulphur isotope analyses of pyrite and chalcopyrite indicate a narrow range of δ34SVCD (− 0.2 to + 4.6 ‰), and no significant mass-independent fractionation (− 0.1 < Δ33S < + 0.05 ‰). Re-Os isotope analyses yield scattered values, which suggests secondary remobilisation. Despite the geographical proximity and the common Cu-Au-Ag association, the mineralisation at Red Bore has significant differences with massive sulphide mineralisation at neighbouring DeGrussa, as well as other massive sulphide deposits around the world. These differences include the geometry, sub-volcanic host rocks, extreme Cu enrichment and narrow δ34S ranges. Although a possible explanation for some of these characteristics is leaching of S and metals from the surrounding volcanic rocks, we favour formation as a result of the release of a magmatic fluid phase along very focussed pathways, and we propose that mixing of this fluid with circulating sea water contributed to sea floor mineralisation similar to neighbouring VHMS deposits. Our data are permissive of a genetic association of Red Bore mineralisation with VHMS deposits nearby, thus suggesting a direct connection between magmatism and mineralising fluids responsible for VHMS deposition at surface. Therefore, the Red Bore mineralisation may represent the magmatic roots of a VHMS system.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Adamides NG (2010) Mafic-dominated volcanogenic sulphide deposits in the Troodos ophiolite, Cyprus part 2—a review of genetic models and guides for exploration. Applied. Earth Sci 119:193–204

    Google Scholar 

  2. Agangi A, Reddy SM (2016) Open-system behaviour of magmatic fluid phase and transport of copper in arc magmas at Krakatau and Batur volcanoes, Indonesia. J Volcanol Geothermal Res 327:669–686. https://doi.org/10.1016/j.jvolgeores.2016.10.006

    Article  Google Scholar 

  3. Bekker A, Barley ME, Fiorentini ML, Rouxel OJ, Rumble D, Beresford SW (2009) Atmospheric sulfur in Archean komatiite-hosted nickel deposits. Science 326(5956):1086–1089. https://doi.org/10.1126/science.1177742

    Article  Google Scholar 

  4. Bell JM (2016) In situ multiple sulphur isotope analysis of the DeGrussa VHMS deposit: implications for exploration and mineralisation. Honours thesis, University of Western Australia, 56 p

  5. Belousov I, Large RR, Meffre S, Danyushevsky LV, Steadman J, Beardsmore T (2016) Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton, Western Australia: implications for gold and copper exploration. Ore Geol Rev 79:474–499. https://doi.org/10.1016/j.oregeorev.2016.04.020

    Article  Google Scholar 

  6. Berkenbosch HA, de Ronde CEJ, Gemmell JB, McNeill AW, Goemann K (2012) Mineralogy and formation of black smoker chimneys from brothers submarine volcano, Kermadec arc. Econ Geol 107(8):1613–1633. https://doi.org/10.2113/econgeo.107.8.1613

    Article  Google Scholar 

  7. Binns RA, Barriga FJAS, Miller DJ (2007) Leg 193 synthesis: anatomy of an active felsic-hosted hydrothermal system, eastern Manus Basin, Papua New Guinea. In: FJAS B, Binns RA, Miller DJ, Herzig PM (eds) Proc ODP, Sci Results, vol 193. Ocean Drilling Program, College Station, pp 1–71

    Google Scholar 

  8. Chen M, Campbell IH, Xue Y, Tian W, Ireland TR, Holden P, Cas RAF, Hayman PC, Das R (2015) Multiple sulfur isotope analyses support a magmatic model for the volcanogenic massive sulfide deposits of the Teutonic bore volcanic complex, Yilgarn craton, Western Australia. Econ Geol 110(6):1411–1423. https://doi.org/10.2113/econgeo.110.6.1411

    Article  Google Scholar 

  9. Christopher T, Edmonds M, Humphreys MCS, Herd RA (2010) Volcanic gas emissions from Soufrière Hills volcano, Montserrat 1995-2009, with implications for mafic magma supply and degassing. Geophys Res Lett 37(19). https://doi.org/10.1029/2009GL041325

    Article  Google Scholar 

  10. Ciobanu C, Cook NJ, Pring A (2005) Bismuth tellurides as gold scavengers mineral deposit research: meeting the global challenge. Springer, Berlin, pp 1383–1386

    Google Scholar 

  11. Ciobanu CL, Cook NJ, Damian F, Damian G (2006) Gold scavenged by bismuth melts: an example from alpine shear-remobilizates in the Highiş massif, Romania. Mineral Petrol 87:351–384

    Article  Google Scholar 

  12. Cloutier J, Piercey SJ, Layne G, Heslop J, Hussey A, Piercey G (2015) Styles, textural evolution, and sulfur isotope systematics of Cu-rich sulfides from the Cambrian Whalesback volcanogenic massive sulfide deposit, central Newfoundland, Canada. Econ Geol 110:1215–1234

    Article  Google Scholar 

  13. Dare SAS, Barnes S-J, Beaudoin G, Méric J, Boutroy E, Potvin-Doucet C (2014) Trace elements in magnetite as petrogenetic indicators. Mineral Deposita 49(7):785–796. https://doi.org/10.1007/s00126-014-0529-0

    Article  Google Scholar 

  14. de Ronde CEJ, Hannington MD, Stoffers P, Wright IC, Ditchburn RG, Reyes AG, Baker ET, Massoth GJ, Lupton JE, Walker SL, Greene RR, Soong CWR, Ishibashi J, Lebon GT, Bray CJ, Resing JA (2005) Evolution of a submarine magmatic-hydrothermal system: brothers volcano, southern Kermadec arc, New Zealand. Econ Geol 100(6):1097–1133. https://doi.org/10.2113/gsecongeo.100.6.1097

    Article  Google Scholar 

  15. de Ronde CEJ, Walker SL, Ditchburn RG, Tontini FC, Hannington MD, Merle SG, Timm C, Handler MR, Wysoczanski RJ, Dekov VM, Kamenov GD, Baker ET, Embley RW, Lupton JE, Stoffers P (2014) The anatomy of a buried submarine hydrothermal system, Clark volcano, Kermadec arc, New Zealand. Econ Geol 109(8):2261–2292. https://doi.org/10.2113/econgeo.109.8.2261

    Article  Google Scholar 

  16. Dora ML, Singh H, Kundu A, Shareef M, Randive KR, Joshi S (2014) Tsumoite (BiTe) and associated Ni-PGE mineralization from Gondpipri mafic-ultramafic complex, Bastar craton, Central India: mineralogy and genetic significance. Centr Eur J Geol 4:506–517

    Google Scholar 

  17. Drummond SE, Ohmoto H (1985) Chemical evolution and mineral deposition in boiling hydrothermal systems. Econ Geol 80(1):126–147. https://doi.org/10.2113/gsecongeo.80.1.126

    Article  Google Scholar 

  18. Dupuis C, Beaudoin G (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineral Deposita 46(4):319–335. https://doi.org/10.1007/s00126-011-0334-y

    Article  Google Scholar 

  19. Farquhar J, Wu N, Canfield DE, Oduro H (2011) Connections between sulfur cycle evolution, sulfur isotopes, sediments, and base metal sulfide deposits. Econ Geol 105:509–533

    Article  Google Scholar 

  20. Galley AG (2003) Composite synvolcanic intrusions associated with Precambrian VMS-related hydrothermal systems. Mineral Deposita 38(4):443–473. https://doi.org/10.1007/s00126-002-0300-9

    Article  Google Scholar 

  21. Galley AG, Hannington M, Jonasson IR (2007) Volcanogenic massive sulphide deposits. In: Goodfellow WD (ed) Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. Geol Assoc Canada, Mineral Deposits Division, Canada, pp 141–161

    Google Scholar 

  22. Gemmell JB, Sharpe R, Jonasson IR, Herzig PM (2004) Sulfur isotope evidence for magmatic contributions to submarine and subaerial gold mineralization: conical seamount and the Ladolam gold deposit, Papua New Guinea. Econ Geol 99(8):1711–1725. https://doi.org/10.2113/gsecongeo.99.8.1711

    Article  Google Scholar 

  23. Hannington MD (2014) 13.18 - Volcanogenic massive sulfide deposits. In: Turekian HDHK (ed) Treatise on Geochemistry, 2nd edn. Elsevier, Oxford, pp 463–488

    Google Scholar 

  24. Hannington M, Herzig P, Scott S, Thompson G, Rona P (1991) Comparative mineralogy and geochemistry of gold-bearing sulfide deposits on the mid-ocean ridges. Mar Geol 101(1-4):217–248. https://doi.org/10.1016/0025-3227(91)90073-D

    Article  Google Scholar 

  25. Hardardóttir V, Brown KL, Fridriksson T, Hedenquist JW, Hannington MD, Thorhallsson S (2009) Metals in deep liquid of the Reykjanes geothermal system, southwest Iceland: implications for the composition of seafloor black smoker fluids. Geology 37(12):1103–1106. https://doi.org/10.1130/G30229A.1

    Article  Google Scholar 

  26. Hawke ML, Davidson GJ, Meffre S, Hilliard P, Large R, Gemmell JB (2015a) Geological evolution of the DeGrussa Cu-Au-Ag volcanic-hosted massive sulfide deposit, Western Australia. SEG 2015 conference. Hobart, Australia, Poster

  27. Hawke ML, Meffre S, Stein H, Hilliard P, Large R, Gemmell JB (2015b) Geochronology of the DeGrussa volcanic-hosted massive sulphide deposit and associated mineralisation of the Yerrida, Bryah and Padbury basins, Western Australia. Precamb Res 267:250–284. https://doi.org/10.1016/j.precamres.2015.06.011

    Article  Google Scholar 

  28. Heinrich CA, Ryan CG, Mernagh TP, Eadington PJ (1992) Segregation of ore metals between magmatic brine and vapor: a fluid inclusion study using PIXE microanalysis. Econ Geol 87(6):1566–1583. https://doi.org/10.2113/gsecongeo.87.6.1566

    Article  Google Scholar 

  29. Henley RW, Mavrogenes J, Tanner D (2012) Sulfosalt melts and heavy metal (as-Sb-bi-Sn-Pb-Tl) fractionation during volcanic gas expansion: the el Indio (Chile) paleo-fumarole. Geofluids 12(3):199–215. https://doi.org/10.1111/j.1468-8123.2011.00357.x

    Article  Google Scholar 

  30. Huston D, Relvas JRS, Gemmell JB, Drieberg S (2011) The role of granites in volcanic-hosted massive sulphide ore-forming systems: an assessment of magmatic–hydrothermal contributions. Mineral Deposita 46(5-6):473–507. https://doi.org/10.1007/s00126-010-0322-7

    Article  Google Scholar 

  31. Huston DL, Pehrsson S, Eglington BM, Khin Zaw (2010) The geology and metallogeny of volcanic-hosted massive sulfide deposits: variations through geologic time and with tectonic setting. Econ Geol 105(3):571–591. https://doi.org/10.2113/gsecongeo.105.3.571

    Article  Google Scholar 

  32. Huston DL, Large RR (1989) A chemical model for the concentration of gold in volcanogenic massive sulfide deposits. Ore Geol Rev 4(3):171–200. https://doi.org/10.1016/0169-1368(89)90017-6

    Article  Google Scholar 

  33. Hynes A, Gee RD (1986) Geological setting and petrochemistry of the Narracoota Volcanics, Capricorn Orogen, Western Australia. Precamb Res 31(2):107–132. https://doi.org/10.1016/0301-9268(86)90070-7

    Article  Google Scholar 

  34. Jamieson JW, Wing BA, Farquhar J, Hannington MD (2013) Neoarchaean seawater sulphate concentrations from sulphur isotopes in massive sulphide ore. Nat Geosci 6(1):61–64. https://doi.org/10.1038/ngeo1647

    Article  Google Scholar 

  35. Kajiwara Y, Krouse HR (1971) Sulfur isotope partitioning in metallic sulfide systems. Can J Earth Sci 8(11):1397–1408. https://doi.org/10.1139/e71-129

    Article  Google Scholar 

  36. Kamenetsky VS, Binns RA, Gemmell JB, Crawford AJ, Mernagh TP, Maas R, Steele D (2001) Parental basaltic melts and fluids in eastern Manus backarc basin: implications for hydrothermal mineralisation. Earth Planet Sci Lett 184(3-4):685–702. https://doi.org/10.1016/S0012-821X(00)00352-6

    Article  Google Scholar 

  37. Keith M, Häckel F, Haase KM, Schwarz-Schampera U, Klemd R (2016) Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geol Rev 72(Part 1):728–745

    Article  Google Scholar 

  38. Khin Zaw, Large RR (1992) The precious metal-rich, South Hercules mineralization, western Tasmania; a possible subsea-floor replacement volcanic-hosted massive sulfide deposit. Econ Geol 87(3):931–952. https://doi.org/10.2113/gsecongeo.87.3.931

    Article  Google Scholar 

  39. Large R, Doyle M, Raymond O, Cooke D, Jones A, Heasman L (1996) Evaluation of the role of Cambrian granites in the genesis of world class VHMS deposits in Tasmania. Ore Geol Rev 10(3-6):215–230. https://doi.org/10.1016/0169-1368(95)00024-0

    Article  Google Scholar 

  40. Large RR (1992) Australian volcanic-hosted massive sulfide deposits; features, styles, and genetic models. Econ Geol 87(3):471–510. https://doi.org/10.2113/gsecongeo.87.3.471

    Article  Google Scholar 

  41. Layton-Matthews D, Peter JM, Scott SD, Leybourne MI (2008) Distribution, mineralogy, and geochemistry of selenium in felsic volcanic-hosted massive sulfide deposits of the Finlayson Lake District, Yukon territory, Canada. Econ Geol 103(1):61–88. https://doi.org/10.2113/gsecongeo.103.1.61

    Article  Google Scholar 

  42. Lehmann B, Zhao X, Zhou M, Du A, Mao J, Zeng P, Henjes-Kunst F, Heppe K (2013) Mid-Silurian back-arc spreading at the northeastern margin of Gondwana: the Dapingzhang dacite-hosted massive sulfide deposit, Lancangjiang zone, southwestern Yunnan, China. Gondwana Res 24(2):648–663. https://doi.org/10.1016/j.gr.2012.12.018

    Article  Google Scholar 

  43. Lobanov K, Yakubchuk A, Creaser RA (2014) Besshi-type VMS deposits of the Rudny Altai (Central Asia). Econ Geol 109(5):1403–1430. https://doi.org/10.2113/econgeo.109.5.1403

    Article  Google Scholar 

  44. Lowenstern JB, Mahood GA, Rivers ML, Sutton SR (1991) Evidence for extreme partitioning of copper into a magmatic vapor-phase. Science 252(5011):1405–1409. https://doi.org/10.1126/science.252.5011.1405

    Article  Google Scholar 

  45. Lydon JW (1984) Ore deposit models - 8. Volcanogenic massive suphide deposits. Part I: a descriptive model. Geosci Canada 11:195–202

    Google Scholar 

  46. Marcoux E, Moëlo Y, Leistel JM (1996) Bismuth and cobalt minerals as indicators of stringer zones to massive sulphide deposits, Iberian Pyrite Belt. Mineral Deposita 31:1–26

    Article  Google Scholar 

  47. Marini L, Moretti R, Accornero M (2011) Sulfur isotopes in magmatic-hydrothermal systems, melts, and magmas. Rev Mineral Geochem 73(1):423–492. https://doi.org/10.2138/rmg.2011.73.14

    Article  Google Scholar 

  48. Maslennikov VV, Maslennikova SP, Large RR, Danyushevsky LV, Herrington RJ, Stanley CJ (2013) Tellurium-bearing minerals in zoned sulfide chimneys from Cu-Zn massive sulfide deposits of the Urals, Russia. Mineral Petrol 107(1):67–99. https://doi.org/10.1007/s00710-012-0230-x

    Article  Google Scholar 

  49. Moss R, Scott SD, Binns RA (2001) Gold content of eastern Manus Basin volcanic rocks: implications for enrichment in associated hydrothermal precipitates. Econ Geol 96:91–107

    Google Scholar 

  50. Murphy PJ, Meyer G (1998) A gold-copper association in ultramafic-hosted hydrothermal sulfides from the mid-Atlantic ridge. Econ Geol 93(7):1076–1083. https://doi.org/10.2113/gsecongeo.93.7.1076

    Article  Google Scholar 

  51. Nadoll P, Angerer T, Mauk JL, French D, Walshe J (2014) The chemistry of hydrothermal magnetite: a review. Ore Geol Rev 61:1–32. https://doi.org/10.1016/j.oregeorev.2013.12.013

    Article  Google Scholar 

  52. Occhipinti SA, Swager CP, Pirajno F (1998) Structural-metamorphic evolution of the Palaeoproterozoic Bryah and Padbury groups during the Capricorn orogeny, Western Australia. Precamb Res 90(3-4):141–158. https://doi.org/10.1016/S0301-9268(98)00046-1

    Article  Google Scholar 

  53. Occhipinti SA, Sheppard S, Passchier C, Tyler IM, Nelson DR (2004) Palaeoproterozoic crustal accretion and collision in the southern Capricorn Orogen: the Glenburgh orogeny. Precamb Res 128(3-4):237–255. https://doi.org/10.1016/j.precamres.2003.09.002

    Article  Google Scholar 

  54. Ohmoto H (1986) Stable isotope geochemistry of ore deposits. Rev Mineral Geochem 16:491–559

    Google Scholar 

  55. Ohmoto H (1996) Formation of volcanogenic massive sulfide deposits: the Kuroko perspective. Ore Geol Rev 10(3-6):135–177. https://doi.org/10.1016/0169-1368(95)00021-6

    Article  Google Scholar 

  56. Peter JM, Goodfellow WD (2003) Hydrothermal sedimentary rocks of the heath Steele Belt, Bathurst mining camp, New Brunswick. 3. Application of hydrothermal sediment mineralogy and mineral and bulk composition to the exploration for concealed massive sulfide mineralization. In: Goodfellow WD, McCutcheon SR, Peter JM (eds) Massive sulphide deposits of the Bathurst mining camp, New Brunswick, and northern Maine, 11. Economic Geology, Monograph, pp 417–433

  57. Peter JM, Layton-Matthews D, Piercey S, Bradshaw G, Paradis S, Boulton A (2007) Volcanic-hosted massive sulphide deposits of the Finlayson Lake District, Yukon. In: Goodfellow WD (ed) Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. Geol Assoc Canada, Mineral Deposits Division, Canada, pp 471–508

    Google Scholar 

  58. Petersen S, Monecke T, Westhues A, Hannington MD, Gemmell JB, Sharpe R, Peters M, Strauss H, Lackschewitz K, Augustin N, Gibson H, Kleeberg R (2014) Drilling shallow-water massive sulfides at the Palinuro volcanic complex, Aeolian Island arc, Italy. Econ Geol 109(8):2129–2158. https://doi.org/10.2113/econgeo.109.8.2129

    Article  Google Scholar 

  59. Pirajno F, Occhipinti SA (2000) Three Palaeoproterozoic basins-Yerrida, Bryah and Padbury-Capricorn Orogen, Western Australia. Aust J Earth Sci 47:675–688

    Article  Google Scholar 

  60. Pirajno F, Occhipinti SA, Swager CP (2000) Geology and mineralisation of the Palaeoproterozoic Bryah and Padbury basins Western Australia. Geol Surv Western Australia, Dept Minerals Energy, 52 p

  61. Pirajno F, Jones JA, Hocking RM, Halilovic J (2004) Geology and tectonic evolution of Palaeoproterozoic basins of the eastern Capricorn Orogen, Western Australia. Precamb Res 128(3-4):315–342. https://doi.org/10.1016/j.precamres.2003.09.006

    Article  Google Scholar 

  62. Pirajno F, Chen Y, Li N, Li C, L-m Z (2016) Besshi-type mineral systems in the Palaeoproterozoic Bryah Rift-Basin, Capricorn Orogen, Western Australia: implications for tectonic setting and geodynamic evolution. Geosci Front 7(3):345–357. https://doi.org/10.1016/j.gsf.2015.09.003

    Article  Google Scholar 

  63. Reddy SM, Occhipinti SA (2004) High-strain zone deformation in the southern Capricorn Orogen, Western Australia: kinematics and age constraints. Precamb Res 128(3-4):295–314. https://doi.org/10.1016/j.precamres.2003.09.005

    Article  Google Scholar 

  64. Richards JP (2013) Giant ore deposits formed by optimal alignments and combinations of geological processes. Nat Geosci 6(11):911–916. https://doi.org/10.1038/ngeo1920

    Article  Google Scholar 

  65. Ripley EM, Li C (2003) Sulfur isotope exchange and metal enrichment in the formation of magmatic Cu-Ni-(PGE) deposits. Econ Geol 98(3):635–641. https://doi.org/10.2113/gsecongeo.98.3.635

    Article  Google Scholar 

  66. Ross P-S, Mercier-Langevin P (2014) Igneous rock associations 14. The volcanic setting of VMS and SMS deposits: A review. Geosci Canada 41(3)

    Article  Google Scholar 

  67. Sabir H (1980) Metallogenic and textural features of sulfide mineralization at Jabal Sayid (Saudi Arabia). Bulletin du Bureau de Recherches Geologiques et Minieres Serie 2, Section II: 103–111

  68. Sandfire Resources Report (2016) DeGrussa mine plan, mineral resource and ore reserve update. www.sandfire.com.au

  69. Sebert C, Hunt J, Foreman IJ (2004) Geology and lithogeochemistry of the Fyre Lake copper-cobalt-gold sulphide-magnetite deposit, southeastern Yukon Yukon Geological Survey Open file 2004–17. pp 46

  70. Shanks WC III (2001) Stable isotopes in seafloor hydrothermal systems: vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes. Rev Mineral Geochem 43(1):469–525. https://doi.org/10.2138/gsrmg.43.1.469

    Article  Google Scholar 

  71. Shanks III WC (2012) Hydrothermal alteration in volcanogenic massive sulfide occurrence model. US Geol Surv Sci Invest Report 2010–5070 –C. 12 p

  72. Sharpe R, Gemmell JB (2002) The Archean cu-Zn magnetite-rich Gossan Hill volcanic-hosted massive sulfide deposit, Western Australia: genesis of a multistage hydrothermal system. Econ Geol 97(3):517–539. https://doi.org/10.2113/gsecongeo.97.3.517

    Article  Google Scholar 

  73. Simon AC, Ripley EM (2011) The role of magmatic sulfur in the formation of ore deposits. Rev Mineral Geochem 73(1):513–578. https://doi.org/10.2138/rmg.2011.73.16

    Article  Google Scholar 

  74. Solomon M, Gemmell JB, Khin Zaw (2004) Nature and origin of the fluids responsible for forming the Hellyer Zn–Pb–Cu, volcanic-hosted massive sulphide deposit, Tasmania, using fluid inclusions, and stable and radiogenic isotopes. Ore Geol Rev 25(1-2):89–124. https://doi.org/10.1016/j.oregeorev.2003.11.001

    Article  Google Scholar 

  75. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotopic evolution by a two-stage model. Earth Planet Sci Lett 26(2):207–221. https://doi.org/10.1016/0012-821X(75)90088-6

    Article  Google Scholar 

  76. Sun W, Arculus RJ, Kamenetsky VS, Binns RA (2004) Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature 431(7011):975–978. https://doi.org/10.1038/nature02972

    Article  Google Scholar 

  77. Symonds RB, Rose WI, Reed MH, Lichte FE, Finnegan DL (1987) Volatilization, transport and sublimation of metallic and non-metallic elements in high temperature gases at Merapi volcano, Indonesia. Geochim Cosmochim Acta 51(8):2083–2101. https://doi.org/10.1016/0016-7037(87)90258-4

    Article  Google Scholar 

  78. Timm C, de Ronde CEJ, Leybourne MI, Layton-Matthews D, Graham IJ (2012) Sources of chalcophile and siderophile elements in Kermadec arc lavas. Econ Geol 107(8):1527–1538. https://doi.org/10.2113/econgeo.107.8.1527

    Article  Google Scholar 

  79. Urabe T, Marumo K (1991) A new model for Kuroko-type deposits of Japan. Episodes 14:246–251

    Google Scholar 

  80. Wohlgemuth-Ueberwasser CC, Viljoen F, Petersen S, Vorster C (2015) Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: an in-situ LA-ICP-MS study. Geochim Cosmochim Acta 159:16–41. https://doi.org/10.1016/j.gca.2015.03.020

    Article  Google Scholar 

  81. Yang K, Scott SD (1996) Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. Nature 383(6599):420–423. https://doi.org/10.1038/383420a0

    Article  Google Scholar 

  82. Yeats CJ, Parr JM, Binns RA, Gemmell JB, Scott SD (2014) The SuSu knolls hydrothermal field, eastern Manus basin, Papua New Guinea: an active submarine high-sulfidation copper-gold system. Econ Geol 109(8):2207–2226. https://doi.org/10.2113/econgeo.109.8.2207

    Article  Google Scholar 

  83. Zierenberg RA, Fouquet Y, Miller DJ, Bahr JM, Baker PA, Bjerkgard T, Brunner CA, Duckworth RC, Gable R, Gieskes J, Goodfellow WD, Groschel-Becker HM, Guerin G, Ishibashi J, Iturrino G, James RH, Lackschewitz KS, Marquez LL, Nehlig P, Peter JM, Rigsby CA, Schultheiss P, Shanks WC, Simoneit BRT, Summit M, Teagle DAH, Urbat M, Zuffa GG (1998) The deep structure of a sea-floor hydrothermal deposit. Nature 392(6675):485–488. https://doi.org/10.1038/33126

    Article  Google Scholar 

Download references

Acknowledgments

SIEF Science and Innovation Endowment Fund is acknowledged for funding this work. B. McDonald is thanked for assistance with LA-ICP-MS analysis. The authors would like to acknowledge the Australian Microscopy & Microanalysis Research Facility, AuScope, the Science and Industry Endowment Fund, and the State Government of Western Australian for contributing to the Ion Probe Facility at the Centre for Microscopy, Characterisation and Analysis at the University of Western Australia. This paper has benefited from reviews of D. Huston, Khin Zaw and G. Beaudoin.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrea Agangi.

Additional information

Editorial handling: D. Huston

Electronic supplementary material

ESM 5
figure11

Plots of Pb isotope ratios (LA-ICP-MS) of chalcopyrite and pyrite from Red Bore compared with values from the DeGrussa VHMS deposit (Hawke et al. 2015b; Belousov et al. 2016) (GIF 92 kb)

ESM 6
figure12

Re-Os analyses of sulphides from Red Bore (6 out of 10 analyses are plotted) (GIF 50 kb)

ESM 1

(DOCX 22 kb)

ESM 2

(DOCX 17 kb)

ESM 3

(XLSX 125 kb)

ESM 4

(XLSX 27 kb)

High resolution image (EPS 1734 kb)

High resolution image (EPS 1477 kb)

ESM 7

Comparison of S isotope compositions of Red Bore and other VHMS deposits throughout Earth’s history. Compilation of VHMS by Huston et al. (2010), sea water sulphide and pyrite from Farquhar et al. (2011), DeGrussa sulphide analyses from Hawke et al. (2015a) (AI 162 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Agangi, A., Reddy, S.M., Plavsa, D. et al. Subsurface deposition of Cu-rich massive sulphide underneath a Palaeoproterozoic seafloor hydrothermal system—the Red Bore prospect, Western Australia. Miner Deposita 53, 1061–1078 (2018). https://doi.org/10.1007/s00126-017-0790-0

Download citation

Keywords

  • VHMS Deposits
  • Volcanic-hosted Massive Sulfide (VHMS)
  • Massive Chalcopyrite
  • Massive Magnetite
  • Deg RUSSIAN