Mineralium Deposita

, Volume 53, Issue 8, pp 1061–1078 | Cite as

Subsurface deposition of Cu-rich massive sulphide underneath a Palaeoproterozoic seafloor hydrothermal system—the Red Bore prospect, Western Australia

  • Andrea AgangiEmail author
  • S. M. Reddy
  • D. Plavsa
  • C. Vieru
  • V. Selvaraja
  • C. LaFlamme
  • H. Jeon
  • L. Martin
  • T. Nozaki
  • Y. Takaya
  • K. Suzuki


The Proterozoic Bryah and Yerrida basins of Western Australia contain important base and precious metal deposits. Here we present microtextural data, trace element and S isotope analyses of massive sulphide mineralisation hosted in Palaeoproterozoic subvolcanic rocks (dolerite) recently discovered at Red Bore. The small-scale high-grade mineralisation, which extends from the sub-surface to at least 95 m down-hole, is dominated by massive chalcopyrite and contains minor pyrite and Bi-Te-(Se) phases. Massive sulphide mineralisation is surrounded by discontinuous brecciated massive magnetite, and a narrow (< 2 m) alteration halo, which suggests very focussed fluid flow. Laser ablation ICP-MS analyses indicate that chalcopyrite contains up to 10 ppm Au and in excess of 100 ppm Ag. Sulphur isotope analyses of pyrite and chalcopyrite indicate a narrow range of δ34SVCD (− 0.2 to + 4.6 ‰), and no significant mass-independent fractionation (− 0.1 < Δ33S < + 0.05 ‰). Re-Os isotope analyses yield scattered values, which suggests secondary remobilisation. Despite the geographical proximity and the common Cu-Au-Ag association, the mineralisation at Red Bore has significant differences with massive sulphide mineralisation at neighbouring DeGrussa, as well as other massive sulphide deposits around the world. These differences include the geometry, sub-volcanic host rocks, extreme Cu enrichment and narrow δ34S ranges. Although a possible explanation for some of these characteristics is leaching of S and metals from the surrounding volcanic rocks, we favour formation as a result of the release of a magmatic fluid phase along very focussed pathways, and we propose that mixing of this fluid with circulating sea water contributed to sea floor mineralisation similar to neighbouring VHMS deposits. Our data are permissive of a genetic association of Red Bore mineralisation with VHMS deposits nearby, thus suggesting a direct connection between magmatism and mineralising fluids responsible for VHMS deposition at surface. Therefore, the Red Bore mineralisation may represent the magmatic roots of a VHMS system.



SIEF Science and Innovation Endowment Fund is acknowledged for funding this work. B. McDonald is thanked for assistance with LA-ICP-MS analysis. The authors would like to acknowledge the Australian Microscopy & Microanalysis Research Facility, AuScope, the Science and Industry Endowment Fund, and the State Government of Western Australian for contributing to the Ion Probe Facility at the Centre for Microscopy, Characterisation and Analysis at the University of Western Australia. This paper has benefited from reviews of D. Huston, Khin Zaw and G. Beaudoin.

Supplementary material

126_2017_790_MOESM1_ESM.docx (22 kb)
ESM 1 (DOCX 22 kb)
126_2017_790_MOESM2_ESM.docx (18 kb)
ESM 2 (DOCX 17 kb)
126_2017_790_MOESM3_ESM.xlsx (125 kb)
ESM 3 (XLSX 125 kb)
126_2017_790_MOESM4_ESM.xlsx (27 kb)
ESM 4 (XLSX 27 kb)
126_2017_790_Fig11_ESM.gif (93 kb)

Plots of Pb isotope ratios (LA-ICP-MS) of chalcopyrite and pyrite from Red Bore compared with values from the DeGrussa VHMS deposit (Hawke et al. 2015b; Belousov et al. 2016) (GIF 92 kb)

126_2017_790_MOESM5_ESM.eps (1.7 mb)
High resolution image (EPS 1734 kb)
126_2017_790_Fig12_ESM.gif (50 kb)

Re-Os analyses of sulphides from Red Bore (6 out of 10 analyses are plotted) (GIF 50 kb)

126_2017_790_MOESM6_ESM.eps (1.4 mb)
High resolution image (EPS 1477 kb) (162 kb)
ESM 7 Comparison of S isotope compositions of Red Bore and other VHMS deposits throughout Earth’s history. Compilation of VHMS by Huston et al. (2010), sea water sulphide and pyrite from Farquhar et al. (2011), DeGrussa sulphide analyses from Hawke et al. (2015a) (AI 162 kb)


  1. Adamides NG (2010) Mafic-dominated volcanogenic sulphide deposits in the Troodos ophiolite, Cyprus part 2—a review of genetic models and guides for exploration. Applied. Earth Sci 119:193–204Google Scholar
  2. Agangi A, Reddy SM (2016) Open-system behaviour of magmatic fluid phase and transport of copper in arc magmas at Krakatau and Batur volcanoes, Indonesia. J Volcanol Geothermal Res 327:669–686. CrossRefGoogle Scholar
  3. Bekker A, Barley ME, Fiorentini ML, Rouxel OJ, Rumble D, Beresford SW (2009) Atmospheric sulfur in Archean komatiite-hosted nickel deposits. Science 326(5956):1086–1089. CrossRefGoogle Scholar
  4. Bell JM (2016) In situ multiple sulphur isotope analysis of the DeGrussa VHMS deposit: implications for exploration and mineralisation. Honours thesis, University of Western Australia, 56 pGoogle Scholar
  5. Belousov I, Large RR, Meffre S, Danyushevsky LV, Steadman J, Beardsmore T (2016) Pyrite compositions from VHMS and orogenic Au deposits in the Yilgarn Craton, Western Australia: implications for gold and copper exploration. Ore Geol Rev 79:474–499. CrossRefGoogle Scholar
  6. Berkenbosch HA, de Ronde CEJ, Gemmell JB, McNeill AW, Goemann K (2012) Mineralogy and formation of black smoker chimneys from brothers submarine volcano, Kermadec arc. Econ Geol 107(8):1613–1633. CrossRefGoogle Scholar
  7. Binns RA, Barriga FJAS, Miller DJ (2007) Leg 193 synthesis: anatomy of an active felsic-hosted hydrothermal system, eastern Manus Basin, Papua New Guinea. In: FJAS B, Binns RA, Miller DJ, Herzig PM (eds) Proc ODP, Sci Results, vol 193. Ocean Drilling Program, College Station, pp 1–71Google Scholar
  8. Chen M, Campbell IH, Xue Y, Tian W, Ireland TR, Holden P, Cas RAF, Hayman PC, Das R (2015) Multiple sulfur isotope analyses support a magmatic model for the volcanogenic massive sulfide deposits of the Teutonic bore volcanic complex, Yilgarn craton, Western Australia. Econ Geol 110(6):1411–1423. CrossRefGoogle Scholar
  9. Christopher T, Edmonds M, Humphreys MCS, Herd RA (2010) Volcanic gas emissions from Soufrière Hills volcano, Montserrat 1995-2009, with implications for mafic magma supply and degassing. Geophys Res Lett 37(19). CrossRefGoogle Scholar
  10. Ciobanu C, Cook NJ, Pring A (2005) Bismuth tellurides as gold scavengers mineral deposit research: meeting the global challenge. Springer, Berlin, pp 1383–1386CrossRefGoogle Scholar
  11. Ciobanu CL, Cook NJ, Damian F, Damian G (2006) Gold scavenged by bismuth melts: an example from alpine shear-remobilizates in the Highiş massif, Romania. Mineral Petrol 87:351–384CrossRefGoogle Scholar
  12. Cloutier J, Piercey SJ, Layne G, Heslop J, Hussey A, Piercey G (2015) Styles, textural evolution, and sulfur isotope systematics of Cu-rich sulfides from the Cambrian Whalesback volcanogenic massive sulfide deposit, central Newfoundland, Canada. Econ Geol 110:1215–1234CrossRefGoogle Scholar
  13. Dare SAS, Barnes S-J, Beaudoin G, Méric J, Boutroy E, Potvin-Doucet C (2014) Trace elements in magnetite as petrogenetic indicators. Mineral Deposita 49(7):785–796. CrossRefGoogle Scholar
  14. de Ronde CEJ, Hannington MD, Stoffers P, Wright IC, Ditchburn RG, Reyes AG, Baker ET, Massoth GJ, Lupton JE, Walker SL, Greene RR, Soong CWR, Ishibashi J, Lebon GT, Bray CJ, Resing JA (2005) Evolution of a submarine magmatic-hydrothermal system: brothers volcano, southern Kermadec arc, New Zealand. Econ Geol 100(6):1097–1133. CrossRefGoogle Scholar
  15. de Ronde CEJ, Walker SL, Ditchburn RG, Tontini FC, Hannington MD, Merle SG, Timm C, Handler MR, Wysoczanski RJ, Dekov VM, Kamenov GD, Baker ET, Embley RW, Lupton JE, Stoffers P (2014) The anatomy of a buried submarine hydrothermal system, Clark volcano, Kermadec arc, New Zealand. Econ Geol 109(8):2261–2292. CrossRefGoogle Scholar
  16. Dora ML, Singh H, Kundu A, Shareef M, Randive KR, Joshi S (2014) Tsumoite (BiTe) and associated Ni-PGE mineralization from Gondpipri mafic-ultramafic complex, Bastar craton, Central India: mineralogy and genetic significance. Centr Eur J Geol 4:506–517Google Scholar
  17. Drummond SE, Ohmoto H (1985) Chemical evolution and mineral deposition in boiling hydrothermal systems. Econ Geol 80(1):126–147. CrossRefGoogle Scholar
  18. Dupuis C, Beaudoin G (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineral Deposita 46(4):319–335. CrossRefGoogle Scholar
  19. Farquhar J, Wu N, Canfield DE, Oduro H (2011) Connections between sulfur cycle evolution, sulfur isotopes, sediments, and base metal sulfide deposits. Econ Geol 105:509–533CrossRefGoogle Scholar
  20. Galley AG (2003) Composite synvolcanic intrusions associated with Precambrian VMS-related hydrothermal systems. Mineral Deposita 38(4):443–473. CrossRefGoogle Scholar
  21. Galley AG, Hannington M, Jonasson IR (2007) Volcanogenic massive sulphide deposits. In: Goodfellow WD (ed) Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. Geol Assoc Canada, Mineral Deposits Division, Canada, pp 141–161Google Scholar
  22. Gemmell JB, Sharpe R, Jonasson IR, Herzig PM (2004) Sulfur isotope evidence for magmatic contributions to submarine and subaerial gold mineralization: conical seamount and the Ladolam gold deposit, Papua New Guinea. Econ Geol 99(8):1711–1725. CrossRefGoogle Scholar
  23. Hannington MD (2014) 13.18 - Volcanogenic massive sulfide deposits. In: Turekian HDHK (ed) Treatise on Geochemistry, 2nd edn. Elsevier, Oxford, pp 463–488CrossRefGoogle Scholar
  24. Hannington M, Herzig P, Scott S, Thompson G, Rona P (1991) Comparative mineralogy and geochemistry of gold-bearing sulfide deposits on the mid-ocean ridges. Mar Geol 101(1-4):217–248. CrossRefGoogle Scholar
  25. Hardardóttir V, Brown KL, Fridriksson T, Hedenquist JW, Hannington MD, Thorhallsson S (2009) Metals in deep liquid of the Reykjanes geothermal system, southwest Iceland: implications for the composition of seafloor black smoker fluids. Geology 37(12):1103–1106. CrossRefGoogle Scholar
  26. Hawke ML, Davidson GJ, Meffre S, Hilliard P, Large R, Gemmell JB (2015a) Geological evolution of the DeGrussa Cu-Au-Ag volcanic-hosted massive sulfide deposit, Western Australia. SEG 2015 conference. Hobart, Australia, PosterGoogle Scholar
  27. Hawke ML, Meffre S, Stein H, Hilliard P, Large R, Gemmell JB (2015b) Geochronology of the DeGrussa volcanic-hosted massive sulphide deposit and associated mineralisation of the Yerrida, Bryah and Padbury basins, Western Australia. Precamb Res 267:250–284. CrossRefGoogle Scholar
  28. Heinrich CA, Ryan CG, Mernagh TP, Eadington PJ (1992) Segregation of ore metals between magmatic brine and vapor: a fluid inclusion study using PIXE microanalysis. Econ Geol 87(6):1566–1583. CrossRefGoogle Scholar
  29. Henley RW, Mavrogenes J, Tanner D (2012) Sulfosalt melts and heavy metal (as-Sb-bi-Sn-Pb-Tl) fractionation during volcanic gas expansion: the el Indio (Chile) paleo-fumarole. Geofluids 12(3):199–215. CrossRefGoogle Scholar
  30. Huston D, Relvas JRS, Gemmell JB, Drieberg S (2011) The role of granites in volcanic-hosted massive sulphide ore-forming systems: an assessment of magmatic–hydrothermal contributions. Mineral Deposita 46(5-6):473–507. CrossRefGoogle Scholar
  31. Huston DL, Pehrsson S, Eglington BM, Khin Zaw (2010) The geology and metallogeny of volcanic-hosted massive sulfide deposits: variations through geologic time and with tectonic setting. Econ Geol 105(3):571–591. CrossRefGoogle Scholar
  32. Huston DL, Large RR (1989) A chemical model for the concentration of gold in volcanogenic massive sulfide deposits. Ore Geol Rev 4(3):171–200. CrossRefGoogle Scholar
  33. Hynes A, Gee RD (1986) Geological setting and petrochemistry of the Narracoota Volcanics, Capricorn Orogen, Western Australia. Precamb Res 31(2):107–132. CrossRefGoogle Scholar
  34. Jamieson JW, Wing BA, Farquhar J, Hannington MD (2013) Neoarchaean seawater sulphate concentrations from sulphur isotopes in massive sulphide ore. Nat Geosci 6(1):61–64. CrossRefGoogle Scholar
  35. Kajiwara Y, Krouse HR (1971) Sulfur isotope partitioning in metallic sulfide systems. Can J Earth Sci 8(11):1397–1408. CrossRefGoogle Scholar
  36. Kamenetsky VS, Binns RA, Gemmell JB, Crawford AJ, Mernagh TP, Maas R, Steele D (2001) Parental basaltic melts and fluids in eastern Manus backarc basin: implications for hydrothermal mineralisation. Earth Planet Sci Lett 184(3-4):685–702. CrossRefGoogle Scholar
  37. Keith M, Häckel F, Haase KM, Schwarz-Schampera U, Klemd R (2016) Trace element systematics of pyrite from submarine hydrothermal vents. Ore Geol Rev 72(Part 1):728–745CrossRefGoogle Scholar
  38. Khin Zaw, Large RR (1992) The precious metal-rich, South Hercules mineralization, western Tasmania; a possible subsea-floor replacement volcanic-hosted massive sulfide deposit. Econ Geol 87(3):931–952. CrossRefGoogle Scholar
  39. Large R, Doyle M, Raymond O, Cooke D, Jones A, Heasman L (1996) Evaluation of the role of Cambrian granites in the genesis of world class VHMS deposits in Tasmania. Ore Geol Rev 10(3-6):215–230. CrossRefGoogle Scholar
  40. Large RR (1992) Australian volcanic-hosted massive sulfide deposits; features, styles, and genetic models. Econ Geol 87(3):471–510. CrossRefGoogle Scholar
  41. Layton-Matthews D, Peter JM, Scott SD, Leybourne MI (2008) Distribution, mineralogy, and geochemistry of selenium in felsic volcanic-hosted massive sulfide deposits of the Finlayson Lake District, Yukon territory, Canada. Econ Geol 103(1):61–88. CrossRefGoogle Scholar
  42. Lehmann B, Zhao X, Zhou M, Du A, Mao J, Zeng P, Henjes-Kunst F, Heppe K (2013) Mid-Silurian back-arc spreading at the northeastern margin of Gondwana: the Dapingzhang dacite-hosted massive sulfide deposit, Lancangjiang zone, southwestern Yunnan, China. Gondwana Res 24(2):648–663. CrossRefGoogle Scholar
  43. Lobanov K, Yakubchuk A, Creaser RA (2014) Besshi-type VMS deposits of the Rudny Altai (Central Asia). Econ Geol 109(5):1403–1430. CrossRefGoogle Scholar
  44. Lowenstern JB, Mahood GA, Rivers ML, Sutton SR (1991) Evidence for extreme partitioning of copper into a magmatic vapor-phase. Science 252(5011):1405–1409. CrossRefGoogle Scholar
  45. Lydon JW (1984) Ore deposit models - 8. Volcanogenic massive suphide deposits. Part I: a descriptive model. Geosci Canada 11:195–202Google Scholar
  46. Marcoux E, Moëlo Y, Leistel JM (1996) Bismuth and cobalt minerals as indicators of stringer zones to massive sulphide deposits, Iberian Pyrite Belt. Mineral Deposita 31:1–26CrossRefGoogle Scholar
  47. Marini L, Moretti R, Accornero M (2011) Sulfur isotopes in magmatic-hydrothermal systems, melts, and magmas. Rev Mineral Geochem 73(1):423–492. CrossRefGoogle Scholar
  48. Maslennikov VV, Maslennikova SP, Large RR, Danyushevsky LV, Herrington RJ, Stanley CJ (2013) Tellurium-bearing minerals in zoned sulfide chimneys from Cu-Zn massive sulfide deposits of the Urals, Russia. Mineral Petrol 107(1):67–99. CrossRefGoogle Scholar
  49. Moss R, Scott SD, Binns RA (2001) Gold content of eastern Manus Basin volcanic rocks: implications for enrichment in associated hydrothermal precipitates. Econ Geol 96:91–107Google Scholar
  50. Murphy PJ, Meyer G (1998) A gold-copper association in ultramafic-hosted hydrothermal sulfides from the mid-Atlantic ridge. Econ Geol 93(7):1076–1083. CrossRefGoogle Scholar
  51. Nadoll P, Angerer T, Mauk JL, French D, Walshe J (2014) The chemistry of hydrothermal magnetite: a review. Ore Geol Rev 61:1–32. CrossRefGoogle Scholar
  52. Occhipinti SA, Swager CP, Pirajno F (1998) Structural-metamorphic evolution of the Palaeoproterozoic Bryah and Padbury groups during the Capricorn orogeny, Western Australia. Precamb Res 90(3-4):141–158. CrossRefGoogle Scholar
  53. Occhipinti SA, Sheppard S, Passchier C, Tyler IM, Nelson DR (2004) Palaeoproterozoic crustal accretion and collision in the southern Capricorn Orogen: the Glenburgh orogeny. Precamb Res 128(3-4):237–255. CrossRefGoogle Scholar
  54. Ohmoto H (1986) Stable isotope geochemistry of ore deposits. Rev Mineral Geochem 16:491–559Google Scholar
  55. Ohmoto H (1996) Formation of volcanogenic massive sulfide deposits: the Kuroko perspective. Ore Geol Rev 10(3-6):135–177. CrossRefGoogle Scholar
  56. Peter JM, Goodfellow WD (2003) Hydrothermal sedimentary rocks of the heath Steele Belt, Bathurst mining camp, New Brunswick. 3. Application of hydrothermal sediment mineralogy and mineral and bulk composition to the exploration for concealed massive sulfide mineralization. In: Goodfellow WD, McCutcheon SR, Peter JM (eds) Massive sulphide deposits of the Bathurst mining camp, New Brunswick, and northern Maine, 11. Economic Geology, Monograph, pp 417–433Google Scholar
  57. Peter JM, Layton-Matthews D, Piercey S, Bradshaw G, Paradis S, Boulton A (2007) Volcanic-hosted massive sulphide deposits of the Finlayson Lake District, Yukon. In: Goodfellow WD (ed) Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. Geol Assoc Canada, Mineral Deposits Division, Canada, pp 471–508Google Scholar
  58. Petersen S, Monecke T, Westhues A, Hannington MD, Gemmell JB, Sharpe R, Peters M, Strauss H, Lackschewitz K, Augustin N, Gibson H, Kleeberg R (2014) Drilling shallow-water massive sulfides at the Palinuro volcanic complex, Aeolian Island arc, Italy. Econ Geol 109(8):2129–2158. CrossRefGoogle Scholar
  59. Pirajno F, Occhipinti SA (2000) Three Palaeoproterozoic basins-Yerrida, Bryah and Padbury-Capricorn Orogen, Western Australia. Aust J Earth Sci 47:675–688CrossRefGoogle Scholar
  60. Pirajno F, Occhipinti SA, Swager CP (2000) Geology and mineralisation of the Palaeoproterozoic Bryah and Padbury basins Western Australia. Geol Surv Western Australia, Dept Minerals Energy, 52 pGoogle Scholar
  61. Pirajno F, Jones JA, Hocking RM, Halilovic J (2004) Geology and tectonic evolution of Palaeoproterozoic basins of the eastern Capricorn Orogen, Western Australia. Precamb Res 128(3-4):315–342. CrossRefGoogle Scholar
  62. Pirajno F, Chen Y, Li N, Li C, L-m Z (2016) Besshi-type mineral systems in the Palaeoproterozoic Bryah Rift-Basin, Capricorn Orogen, Western Australia: implications for tectonic setting and geodynamic evolution. Geosci Front 7(3):345–357. CrossRefGoogle Scholar
  63. Reddy SM, Occhipinti SA (2004) High-strain zone deformation in the southern Capricorn Orogen, Western Australia: kinematics and age constraints. Precamb Res 128(3-4):295–314. CrossRefGoogle Scholar
  64. Richards JP (2013) Giant ore deposits formed by optimal alignments and combinations of geological processes. Nat Geosci 6(11):911–916. CrossRefGoogle Scholar
  65. Ripley EM, Li C (2003) Sulfur isotope exchange and metal enrichment in the formation of magmatic Cu-Ni-(PGE) deposits. Econ Geol 98(3):635–641. CrossRefGoogle Scholar
  66. Ross P-S, Mercier-Langevin P (2014) Igneous rock associations 14. The volcanic setting of VMS and SMS deposits: A review. Geosci Canada 41(3)CrossRefGoogle Scholar
  67. Sabir H (1980) Metallogenic and textural features of sulfide mineralization at Jabal Sayid (Saudi Arabia). Bulletin du Bureau de Recherches Geologiques et Minieres Serie 2, Section II: 103–111Google Scholar
  68. Sandfire Resources Report (2016) DeGrussa mine plan, mineral resource and ore reserve update.
  69. Sebert C, Hunt J, Foreman IJ (2004) Geology and lithogeochemistry of the Fyre Lake copper-cobalt-gold sulphide-magnetite deposit, southeastern Yukon Yukon Geological Survey Open file 2004–17. pp 46Google Scholar
  70. Shanks WC III (2001) Stable isotopes in seafloor hydrothermal systems: vent fluids, hydrothermal deposits, hydrothermal alteration, and microbial processes. Rev Mineral Geochem 43(1):469–525. CrossRefGoogle Scholar
  71. Shanks III WC (2012) Hydrothermal alteration in volcanogenic massive sulfide occurrence model. US Geol Surv Sci Invest Report 2010–5070 –C. 12 pGoogle Scholar
  72. Sharpe R, Gemmell JB (2002) The Archean cu-Zn magnetite-rich Gossan Hill volcanic-hosted massive sulfide deposit, Western Australia: genesis of a multistage hydrothermal system. Econ Geol 97(3):517–539. CrossRefGoogle Scholar
  73. Simon AC, Ripley EM (2011) The role of magmatic sulfur in the formation of ore deposits. Rev Mineral Geochem 73(1):513–578. CrossRefGoogle Scholar
  74. Solomon M, Gemmell JB, Khin Zaw (2004) Nature and origin of the fluids responsible for forming the Hellyer Zn–Pb–Cu, volcanic-hosted massive sulphide deposit, Tasmania, using fluid inclusions, and stable and radiogenic isotopes. Ore Geol Rev 25(1-2):89–124. CrossRefGoogle Scholar
  75. Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotopic evolution by a two-stage model. Earth Planet Sci Lett 26(2):207–221. CrossRefGoogle Scholar
  76. Sun W, Arculus RJ, Kamenetsky VS, Binns RA (2004) Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization. Nature 431(7011):975–978. CrossRefGoogle Scholar
  77. Symonds RB, Rose WI, Reed MH, Lichte FE, Finnegan DL (1987) Volatilization, transport and sublimation of metallic and non-metallic elements in high temperature gases at Merapi volcano, Indonesia. Geochim Cosmochim Acta 51(8):2083–2101. CrossRefGoogle Scholar
  78. Timm C, de Ronde CEJ, Leybourne MI, Layton-Matthews D, Graham IJ (2012) Sources of chalcophile and siderophile elements in Kermadec arc lavas. Econ Geol 107(8):1527–1538. CrossRefGoogle Scholar
  79. Urabe T, Marumo K (1991) A new model for Kuroko-type deposits of Japan. Episodes 14:246–251Google Scholar
  80. Wohlgemuth-Ueberwasser CC, Viljoen F, Petersen S, Vorster C (2015) Distribution and solubility limits of trace elements in hydrothermal black smoker sulfides: an in-situ LA-ICP-MS study. Geochim Cosmochim Acta 159:16–41. CrossRefGoogle Scholar
  81. Yang K, Scott SD (1996) Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. Nature 383(6599):420–423. CrossRefGoogle Scholar
  82. Yeats CJ, Parr JM, Binns RA, Gemmell JB, Scott SD (2014) The SuSu knolls hydrothermal field, eastern Manus basin, Papua New Guinea: an active submarine high-sulfidation copper-gold system. Econ Geol 109(8):2207–2226. CrossRefGoogle Scholar
  83. Zierenberg RA, Fouquet Y, Miller DJ, Bahr JM, Baker PA, Bjerkgard T, Brunner CA, Duckworth RC, Gable R, Gieskes J, Goodfellow WD, Groschel-Becker HM, Guerin G, Ishibashi J, Iturrino G, James RH, Lackschewitz KS, Marquez LL, Nehlig P, Peter JM, Rigsby CA, Schultheiss P, Shanks WC, Simoneit BRT, Summit M, Teagle DAH, Urbat M, Zuffa GG (1998) The deep structure of a sea-floor hydrothermal deposit. Nature 392(6675):485–488. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Applied GeologyCurtin UniversityBentleyAustralia
  2. 2.Thundelarra Ltd.NedlandsAustralia
  3. 3.Centre for Exploration Targeting (CET)University of Western AustraliaCrawleyAustralia
  4. 4.Centre for Microscopy, Characterisation and Analysis (CMCA)University of Western AustraliaCrawleyAustralia
  5. 5.Research and Development (R&D) Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC)YokosukaJapan
  6. 6.Department of Resources and Environmental Engineering, School of Creative Science and EngineeringWaseda UniversityTokyoJapan

Personalised recommendations