Mineralium Deposita

, Volume 53, Issue 1, pp 1–20 | Cite as

The role of evaporites in the formation of gems during metamorphism of carbonate platforms: a review

  • Gaston GiulianiEmail author
  • Jean Dubessy
  • Daniel Ohnenstetter
  • David Banks
  • Yannick Branquet
  • Julien Feneyrol
  • Anthony E. Fallick
  • Jean-Emmanuel Martelat
Invited Paper


The mineral and fluid inclusions trapped by gemstones during the metamorphism of carbonate platform successions are precious markers for the understanding of gem genesis. The nature and chemical composition of inclusions highlight the major contribution of evaporites through dissolution or fusion, depending on the temperature of formation from greenschist to granulite facies. The fluids are highly saline NaCl-brines circulating either in an open system in the greenschist facies (Colombian and Afghan emeralds) and with huge fluid-rock metasomatic interactions, or sulphurous fluids (ruby, garnet tsavorite, zoisite tanzanite and lapis-lazuli) or molten salts formed in a closed system with a low fluid mobility (ruby in marble) in the conditions of the amphibolite to granulite facies. These chloride-fluoride-sulphate ± carbonate-rich fluids scavenged the metals essential for gem formation. At high temperature, the anions SO4 2−, NO3 , BO3 and F are powerful fluxes which lower the temperature of chloride- and fluoride-rich ionic liquids. They provided transport over a very short distance of aluminium and/or silica and transition metals which are necessary for gem growth. In summary, the genetic models proposed for these high-value and ornamental gems underline the importance of the metamorphism of evaporites formed on continental carbonate shelves and emphasise the chemical power accompanying metamorphism at moderate to high temperatures of evaporite-rich and organic matter-rich protoliths to form gem minerals.


Gems Emerald Ruby Garnet Zoisite Lapis-lazuli Metamorphism Carbonate platform Evaporites Brines Fingerprints Salinity Molten salts Thermal reduction of sulphates 



The authors would like to thank Dr. Bernd Lehmann, Editor of Mineralium Deposita, who invited us to write this paper on the role of evaporites in the formation of metamorphic gems, published in a short version as “Le fluide, l’Arlésienne du métamorphisme” in the Journal Géochronique, no. 136, décembre 2015 entitled “Regards croisés sur le métamorphisme”.


  1. Banks D, Giuliani G, Yardley BWD, Cheilletz A (2000) Emerald mineralisation in Colombia: fluid chemistry and the role of brine mixing. Mineral Deposita 35:699–713CrossRefGoogle Scholar
  2. Barth S (1993) Boron isotope variations in nature—a synthesis. Geol Rundsch 83:640–651Google Scholar
  3. Bohlke JK, Irwin JJ (1992) Laser microprobe analyses of Cl, Br, I and K in fluid inclusions—implications for sources of salinity in some ancient hydrothermal fluids. Geochim Cosmochim Acta 56:203–225CrossRefGoogle Scholar
  4. Bowersox GW, Snee LW, Foord EF, Seal RRII (1991) Emeralds of the Panjshir Valley, Afghanistan. Gems Gemol 27:26–39CrossRefGoogle Scholar
  5. Branquet Y, Laumonier B, Cheilletz A, Giuliani G (1999a) Emeralds in the Eastern Cordillera of Colombia: two tectonic settings for one mineralisation. Geology 27:597–600CrossRefGoogle Scholar
  6. Branquet Y, Cheilletz A, Giuliani G, Laumonier B (1999b) Fluidized hydrothermal breccia in dilatant faults during thrusting: the Colombian emerald deposits. In: McCaffrey KJW, Lonergan L, Wilkinson JJ (eds) Fractures, fluid flow and mineralisation. Geological Society, London, Special Publication 155, pp 183–195.  10.1144/GSL.SP.1999.155.01.14
  7. Branquet Y, Giuliani G, Cheilletz A, Laumonier B (2015) Colombian emeralds and evaporites: tectono-stratigraphic significance of a regional emerald-bearing evaporitic breccia level. In: André-Mayer AS, Cathelineau M, Muchez Ph, Picard E, Sindern S (eds) From source, transport and metal deposits to mineral resources in a sustainable world, Proceedings of the 13th biennal meeting of the society for geology applied to mineral deposits, Nancy, France, pp 1291–1294Google Scholar
  8. Cheilletz A, Féraud G, Giuliani G, Rodriguez CT (1994) Time-pressure-temperature formation of Colombian emerald: an 40Ar/39Ar laser-probe and fluid inclusion-microthermometry contribution. Econ Geol 89:361–380Google Scholar
  9. Cheilletz A, Giuliani G, Branquet Y, Laumonier B, Sanchez AJM, Féraud G, Arhan T (1997) Datation K-Ar et 40Ar/39Ar à 65 ± 3 Ma des gisements d’émeraude du district de Chivor-Macanal: argument en faveur d’une déformation précoce dans la Cordillère Orientale de Colombie. C R Acad Sci 324:369–377Google Scholar
  10. Ericksen GE (1983) The Chilean nitrate deposits. Am Sci 71:366–374Google Scholar
  11. Faryad SW (2002) Metamorphic conditions and fluid compositions of scapolite-bearing rocks from the lapis lazuli deposit of Sare Sang, Afghanistan. J Petrol 43:725–747CrossRefGoogle Scholar
  12. Feneyrol J (2012) Pétrologie, géochimie et genèse des gisements de tsavorite associés aux gneiss et roches calco-silicatées graphiteux de Lemshuku et Namalulu (Tanzanie). Ph.D Institut National Polytechnique de Lorraine, Vandœuvre-lès-NancyGoogle Scholar
  13. Feneyrol J, Giuliani G, Ohnenstetter D, Le Goff E, Malisa PJ, Saul M (2010) Lithostratigraphic and structural controls of tsavorite deposits at Lemshuku, Merelani area, Tanzania. Contrôles lithostratigraphique et structural des gisements de tsavorite de Lemshuku, région de Merelani, Tanzanie. C R Acad Sci 342:778–785Google Scholar
  14. Feneyrol J, Ohnenstetter D, Giuliani G, Fallick AE, Rollion-Bard Cl, Robert JL, Malisa E (2012) Evidence of evaporites in the genesis of the vanadian grossular tsavorite deposit in Namalulu, Tanzania. Can Mineral 50:745–769Google Scholar
  15. Feneyrol J, Giuliani G, Ohnenstetter D, Fallick AE, Martelat JM, Monié P, Dubessy C, Rollion-Bard Cl, Le Goff E, Malisa E, Rakotondrazafy AFM, Pardieu V, Kahn T, Ichang'i D, Venance E, Voarintsoa NR, Ranatsenho M, Simonet C, Omito E, Nyamai C, Saul M (2013) Worldwide tsavorite deposits: new aspects and perspectives. Ore Geol Rev 53:1–25Google Scholar
  16. Fritz H, Abdelsalam M, Ali KA, Bingen B, Collins AS, Fowler AR, Ghebread W, Hauzenberger CA, Johnson PR, Kusky TM, Macey P, Muhongo S, Stern RJ, Viola G (2013) Orogen styles in the East Africa region: a review of the Neoproterozoic to Cambrian tectonic evolution. J Afr Earth Sci 86:65–106CrossRefGoogle Scholar
  17. Garnier V, Ohnenstetter D, Giuliani G (2004) L’aspidolite fluorée: rôle des évaporites dans la genèse des marbres de Nangimali (Azad-Kashmir, Pakistan). C R Acad Sci 336:1245–1253Google Scholar
  18. Garnier V, Maluski H, Giuliani G, Ohnenstetter D, Schwarz D (2006) Ar-Ar and U-Pb ages of marble-hosted ruby deposits from central and southeast Asia. Can J Earth Sci 43:509–532CrossRefGoogle Scholar
  19. Garnier V, Giuliani G, Ohnenstetter D, Fallick AE, Dubessy J, Banks D, Hoàng Quang V, Lhomme T, Maluski H, Pêcher A, Bakhsh KA, Pham Van L, Phan Trong T, Schwarz D (2008) Marble-hosted ruby deposits from central and Southeast Asia: towards a new genetic model. Ore Geol Rev 34:169–191CrossRefGoogle Scholar
  20. Giuliani G, Cheilletz A, Dubessy J, Rodriguez CT (1993a) Emerald deposits from Colombia: chemical composition of fluid inclusions and origin. Proceedings of the 8th Quadrennial IAGOD Symposium, Ottawa, Canada, pp 159–168Google Scholar
  21. Giuliani G, Cheilletz A, Sheppard SMF, Arboleda C (1993b) Geochemistry and origin of the emerald deposits of Colombia. In: Hach-Ali F, Torres L and Gervilla F (eds) Current research in geology applied to ore deposits, Proceedings of the 2nd biennal meeting of the Society for Geology Applied to Mineral Deposits, Granada, Spain, pp 105–108Google Scholar
  22. Giuliani G, Cheilletz A, Arboleda C, Rueda F, Carillo V, Baker J (1995) An evaporitic origin of the parent brines of Colombian emeralds: fluid inclusion and sulfur isotopic evidence. Eur J Mineral 7:151–165CrossRefGoogle Scholar
  23. Giuliani G, France-Lanord C, Zimmermann JL, Cheilletz A, Arboleda C, Charoy B, Coget P, Fontan F, Giard D (1997) Composition of fluids, δD of channel H2O and δ18O of lattice oxygen in beryls: genetic implications for Brazilian, Colombian and Afghanistani emerald deposits. Intern Geol Rev 39:400–424Google Scholar
  24. Giuliani G, France-Lanord C, Cheilletz A, Coget P, Branquet Y, Laumonier B (2000) Sulfate reduction by organic matter in Colombian emerald deposits: chemical and stable isotope (C, O, H) evidence. Econ Geol 95:1129–1153Google Scholar
  25. Giuliani G, Dubessy J, Banks D, Hoang Quang V, Lhomme T, Pironon J, Garnier V, Phan Trong T, Pham Van L, Ohnenstetter D, Schwarz D (2003) CO2-H2S-COS-S8-AlO(OH)-bearing fluid inclusions in ruby from marble-hosted deposits in Luc Yen area, North Vietnam. Chem Geol 194:167–185CrossRefGoogle Scholar
  26. Giuliani G, Groat L, Ohnenstetter D, Fallick AE, Feneyrol J (2014a) The geology of gems and their geographic origin. In: Raeside ER (ed) Geology of gem deposits, Mineralogical Association of Canada, Short Course Series. Raeside R, Nova Scotia, Canada, 44: 113–134Google Scholar
  27. Giuliani G, Ohnenstetter D, Fallick AE, Groat L, Fagan J (2014b) The geology and genesis of gem corundum deposits. In: Raeside ER (ed) Geology of gem deposits, Mineralogical Association of Canada, Short Course Series Raeside R, Nova Scotia, Canada, 44: 29–112Google Scholar
  28. Giuliani G, Dubessy J, Banks D, Lhomme T, Ohnenstetter D (2015a) Fluid inclusions in ruby from Asian marble deposits: genetic implications. Eur J Mineral 27:393–404CrossRefGoogle Scholar
  29. Giuliani G, Ohnenstetter D, Rollion Cl, Feneyrol J, Martelat JE, Omito E, Ichang'i D, Nyamai Ch, Wamunyu A (2015b) The boron isotopic composition of tourmaline from tsavorite deposits in the Neoproterozoic Mozambique metamorphic belt, with a special focus on the mining districts in Kenya. In: André-Mayer AS, Cathelineau M, Muchez Ph, Picard E, Sindern S (eds) From Source, Transport and Metal Deposits to Mineral Resources in a Sustainable World, Proceedings of the 13th Biennal Meeting of the Society for Geology Applied to Mineral Deposits, Nancy, France, pp 1319–1322Google Scholar
  30. Groat LA (2014) Geology of gem deposits, 2nd ed. Mineralogical Association of Canada Short Course Series 44: 1–405Google Scholar
  31. Hubbard MS, Grew ES, Hodges KV, Yates MG, Pertsev NN (1999) Neogene cooling and exhumation of upper-amphibolite-facies ‘whiteschists’ in the southwest Pamir Mountains, Tajikistan. Tectonophysics 305:325–337CrossRefGoogle Scholar
  32. Hughes RW (1997) Ruby and sapphire. RW Hughes Publishing, BoulderGoogle Scholar
  33. Kazmi AH, Snee LW (1989) Emeralds of Pakistan. Van Nostrand Reinhold, New YorkCrossRefGoogle Scholar
  34. Kozlowski A, Metz P, Jaramillo HAE (1988) Emeralds from Sodomondoco, Colombia: chemical composition, fluid inclusion and origin. Neues Jahrbuch Miner Abh 59:23–49Google Scholar
  35. Kulke HG (1974) Die Lapis-lazuli-Lagerstätte Sar-e-Sang (Badakhshan): Geologie, Entstehung, Kulturgeschichte und Bergbau. Afghanistan Journal 3(2):43–56Google Scholar
  36. Kulke HG, Schreyer W (1973) Kyanite-talc schist from Sar e Sang, Afghanistan. Earth Planet Sci Lett 18:324–328CrossRefGoogle Scholar
  37. Lacassagne V, Besseda C, Florian P, Bouvet S, Olliver B, Coutures JP, Massiot D (2002) Structure of high temperature NaF-AlF3-Al2O3 melts: a multinuclear NMR study. J Phys Chem 106:1862–1868CrossRefGoogle Scholar
  38. Laumonier B, Branquet Y, Cheilletz A, Giuliani G, Rueda F (1996) Les gisements d’émeraude de Muzo et de Coscuez (ouest de la Cordillère Orientale de Colombie) sont des duplex formés pendant une phase de tectonique en chevauchement à la limite Eocène-Oligocène. C R Acad Sci 320:1171–1178Google Scholar
  39. Machel HG, Krouse HR, Sassen R (1995) Products and distinguishing criteria of bacterial and thermochemical sulphate reduction. Appl Geochem 10:373–389CrossRefGoogle Scholar
  40. Mattauer M, Matte P, Jolivet JL (1999) A 3D model of the India-Asia collision at plate scale. C R Acad Sci 328:499–508Google Scholar
  41. Olivier B (2006) The geology and petrology of the Merelani tanzanite deposit, NE Tanzania. Ph.D University of Stellenbosch, Stellenbosch, South AfricaGoogle Scholar
  42. Ottaway TL, Wicks FJ, Bryndzia LT, Kyser TK, Spooner ETC (1994) Formation of the Muzo hydrothermal emerald deposit in Colombia. Nature 369:552–554CrossRefGoogle Scholar
  43. Pêcher A, Giuliani G, Garnier V, Maluski H, Kausar AB, Malik RM, Muntaz HR (2002) Geology and geochemistry of the Nangimali ruby deposit area, Nanga-Parbat Himalaya (Azad Kashmir, Pakistan). J Asian Earth Sci 21:265–282CrossRefGoogle Scholar
  44. Pokrovski GS, Dubessy J (2014) Stability and abundance of the trisulfur radical ion S3− in hydrothermal fluids. Earth Planet Sci Lett 411:298–309CrossRefGoogle Scholar
  45. Pokrovski GS, Dubrovinsky LS (2011) The S3− ion is stable in geological fluids at elevated temperatures and pressures. Science 331:1052–1054CrossRefGoogle Scholar
  46. Polovov IB, Vasin BD, Abakumov AV, Rebrin OI, Chernyshov MV, Volkovich VA, Griffiths TR (2007) Thermodynamics of the formation of vanadium (II) complexes in chloride melts. In: Mantz RA, Hagiwara M, Trulove HC, De Long H, Stafford GR, Fox D (eds) Molten salts, ECS transactions 3, 35, The Electrochemical Society, Pennington, pp 589–597Google Scholar
  47. Reinen D, Lindner GG (1999) The nature of the chalcogen colour centres in ultramarine-type solids. Chem Soc Rev 28:75–84CrossRefGoogle Scholar
  48. Roedder E (1963) Studies of fluid inclusions II: freezing data and their interpretation. Econ Geol 58:163–211Google Scholar
  49. Sabot B, Cheilletz A, De Donato P, Banks D, Levresse D, Barrès O (2000) Afghan emeralds face Colombian cousins. Chron Rech Min 541:111–114Google Scholar
  50. Samson I, Anderson A, Marshall D (2003) Fluid inclusions: analysis and interpretation. Mineralogical Association of Canada, Short Course Series 32:1–374Google Scholar
  51. Schreyer W, Abraham K (1976) Three-stage metamorphic history of a whiteschist from Sar e Sang, Afghanistan, as part of a former evaporite deposit. Contrib Mineral Petrol 59:111–130CrossRefGoogle Scholar
  52. Tapponnier P, Mattauer M, Proust F, Cassaigneau C (1981) Mesozoic ophiolites, sutures, and large-scale tectonic movements in Afghanistan. Earth Planet Sci Lett 52:355–371CrossRefGoogle Scholar
  53. Tenczer V, Hauzenberger C, Fritz H, Hoinkes G, Muhongo S, Klötzli U (2013) Crustal age domains and metamorphic reworking of the deep crust in Northern-Central Tanzania: a U/Pb zircon and monazite age study. Mineral Petrol 107:679–707CrossRefGoogle Scholar
  54. Truche L, Bazarkina EF, Barré G, Thomassot E, Berger G, Dubessy J, Robert P (2014) The role of S3− ion in thermochemical sulphate reduction: geological and geochemical implications. Earth Planet Sci Lett 396:190–200CrossRefGoogle Scholar
  55. Van Hinsberg VJ, Henry DJ, Marschall HR (2011) Tourmaline: an indicator of its host-environment. Can Mineral 49:1–16CrossRefGoogle Scholar
  56. Vapnik YE, Moroz I (2001) Fluid inclusions in Panjshir emerald (Afghanistan). In: Noronha F, Dória A, Guedes A (eds) XVI European current research on fluid inclusions, (ECROFI), Porto, Portugal, Faculdade de Ciências do Porto, Memoria, vol 7, pp 451–454Google Scholar
  57. Vasin BD, Polovov IB, Volkovich VA, Griffiths TR, Berezin AV (2004) Coordination state of vanadium in chloride melts: an electronic absorption spectroscopy study. In: Mantz RA, Trulove HC, De Long H, Stafford GR, Hagiwara M, Costa DA (eds) “Molten Salts XIV”, Proceedings of the International symposium, Electrochemical Society, 2004–24, New Jersey, USA, pp 261–268Google Scholar
  58. Warren JK (2006) Evaporites: sediments, resources and hydrocarbons. Springer, BerlinCrossRefGoogle Scholar
  59. Williams AE, McKibben MA (1989) A brine interface in the Salton Sea geothermal system, California: fluid, geochemical and isotopic characteristics. Geochim Cosmochim Acta 53:1905–1920CrossRefGoogle Scholar
  60. Wilson WE, Saul JM, Pardieu V, Hughes RW (2009) The Merelani tanzanite mines. Mineral Record 40:347–408Google Scholar
  61. Wood SA (1992) Theoretical prediction of speciation and solubility of beryllium in hydrothermal solution to 300°C at saturated vapour pressure: application to bertrandite/phenakite deposits. Ore Geol Rev 7:249–278CrossRefGoogle Scholar
  62. Yardley WB, Bodnar RJ (2014) Fluids in the continental crust. Geochem Persp Lett 3:1–127CrossRefGoogle Scholar
  63. Yardley WB, Cleverley JS (2013) The role of metamorphic fluids in the formation of ore deposits. In: Jenkin GRT, Lusty PAJ, McDonald I, Smith MP, Boyce AJ, Wilkinson JJ (eds) Ore deposits in an evolving Earth, Geol Soc London, Special Publications, vol 393. doi: 10.1144/SP393.5 Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Gaston Giuliani
    • 1
    • 2
    Email author
  • Jean Dubessy
    • 3
  • Daniel Ohnenstetter
    • 4
  • David Banks
    • 5
  • Yannick Branquet
    • 6
    • 7
  • Julien Feneyrol
    • 8
  • Anthony E. Fallick
    • 9
  • Jean-Emmanuel Martelat
    • 10
  1. 1.Université Paul Sabatier, GET/IRD, UMR CNRS-IRD-CNES 5563ToulouseFrance
  2. 2.Université de Lorraine, CRPG UMR 7358 CNRS-ULVandœuvre-lès-Nancy cedexFrance
  3. 3.Université de Lorraine, GeoRessources UMR 7359 CNRS-ULVandœuvre-lès-NancyFrance
  4. 4.4 rue Nicolas ChopinMarainville-sur-MadonFrance
  5. 5.University of Leeds, School of Earth and Environment, Woodhouse LaneLeedsUK
  6. 6.ISTO, UMR 7327-CNRS/Université d’Orléans/BRGMOrléansFrance
  7. 7.Géosciences-Rennes, UMR6881-CNRS/Université de Rennes I, Campus de BeaulieuRennes CedexFrance
  8. 8.Arethuse Geology, Latitude ArboisLes MillesFrance
  9. 9.Isotope Geosciences Unit, S.U.E.R.CGlasgowUK
  10. 10.Laboratoire de Géologie de Lyon (LGLTPE)Université de Lyon 1, ENSLVilleurbanne CedexFrance

Personalised recommendations