Skip to main content

Advertisement

Log in

Geology, mineralization, and fluid inclusion study of the Kuru-Tegerek Au-Cu-Mo skarn deposit in the Middle Tien Shan, Kyrgyzstan

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Kuru-Tegerek Cu-Au-Mo deposit is situated in a system of Late Carboniferous subduction-related magmatic arcs of the Middle Tien Shan, which together constitute a metallogenic belt of Cu-Au-Mo (±W) porphyry, with local skarns, deposits. The deposit is related to magnetite-series gabbro-diorite to tonalite intrusion. It contains prograde magnesian and calcic skarns with abundant magnetite, associated with gabbro-diorite, and retrograde skarn with Cu mineralization, formed after intrusion of tonalite. Subsequent propylitic alteration introduced abundant chalcopyrite and pyrrhotite, and native Au culminating in zones overprinting magnetite and garnet skarn. Later quartz-muscovite-carbonate veins, formed after intrusion of late mafic quartz monzogabbro dikes, contain chalcopyrite, pyrite, arsenopyrite and other sulfides and sulfosalts, tellurides, and native Au. The earliest retrograde skarn garnet contains gaseous low-salinity (1.7–3.4 wt.% NaCl eq.) fluid inclusions homogenizing at 460–500 °C into vapor, indicating that the early fluid released from crystallizing magma was a low-density vapor. It was followed by more saline (4.0–5.0 wt.% NaCl eq.), high-temperature (400–440 °C) aqueous fluid, as fluid release from the magma progressed. Boiling of this fluid at temperatures of 420 to 370 °C and a pressure of ~350–300 bar produced a low-salinity (0.6–1.2 wt.% NaCl eq.), essentially gaseous, and high-salinity (from ~39 to ~31 wt.% NaCl eq.) brine, with possible metal (including Cu) partitioning into both gaseous and aqueous-saline phases. Boiling was coeval with sulfide deposition in the retrograde skarn. The latest episode of the retrograde skarn stage included direct separation of saline (~40–42 wt.% NaCl eq.) fluid from crystallizing magma. The separation of saline (~40 to ~14 wt.% NaCl eq.) fluids from a crystallizing magmatic melt continued during the propylitic stage, when fluid cooling from ~370 to 320 °C, together with decreasing fO2, caused Cu and especially Au precipitation. A new influx of possibly magma-derived, low-salinity (4.5–6.7 wt.% NaCl eq.) aqueous, and then NaCl-CO2-H2O fluids, corresponds to the phyllic (quartz-muscovite-carbonate-sulfide) stage. These fluids may have a deeper source, associated with the late mafic quartz monzogabbro dikes. Fluid cooling (from ~340 to 255 °C) and boiling of the NaCl-CO2-H2O fluid, together with increased fS2, increased the Au endowment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alexeiev DV, Kröner A, Hegner E, Rojas-Agramonte Y, Biske YS, Wong J, Geng HY, Ivleva EA, Mühlberg M, Mikolaichuk AV, Liu D (2016) Middle to Late Ordovician arc system in the Kyrgyz Middle Tian Shan: from arc-continent collision to subsequent evolution of a Palaeozoic continental margin. Gondwana Res 39:261–291

    Article  Google Scholar 

  • Andreev VV (1975) The complex Cu-Au Kuru-Tegerek deposit and prospecting-assessment criteria for analogous deposit type. Ph.D. dissertation, Moscow, TsNIGRI. 177 p. (in Russian)

  • Arne KG (2005) Kuru-Tegerek Copper-Gold Property Technical Report, Chatkal Valley, Kyrgyz Republic. Behre Dolbear and Company (USA), Eurasian Minerals Inc. Bishkek, 104 p

  • Atkinson AB (2002) A model for the PTX properties of H2O-NaCl. M.Sc.Thesis, Virginia Tech Institute and State Univ, 126 p

  • Atkinson WW, Einaudi MT (1978) Skarn formation and mineralization in the contact aureole at Carr Fork, Bingham, Utah. Econ Geol 73:1326–1365

    Article  Google Scholar 

  • Audetat A, Pettke T, Heinrich CA, Bodnar RJ (2008) The composition of magmatic-hydrothermal fluids in barren and mineralized intrusions. Econ Geol 103:877–908

    Article  Google Scholar 

  • Baker T (2002) Emplacement depth and carbon dioxide-rich fluid inclusions in intrusion-related gold deposits. Econ Geol 97:1111–1117

    Article  Google Scholar 

  • Baker T, Lang JR (2003) Reconciling fluid inclusion types, fluid processes, and fluid sources in skarns: an example from the Bismark deposit, Mexico. Min Dep 38:474–495

    Article  Google Scholar 

  • Baker T, Van Achterberg E, Ryan CG (2004) Composition and evolution of ore fluids in a magmatic-hydrothermal skarn deposit. Geology 32:117–120

    Article  Google Scholar 

  • Baker T, Pollard PJ, Mustard R, Mark G, Graham JL (2005) A comparison of granite-related tin, tungsten, and gold-bismuth deposits: implications for exploration. SEG Newsletter 61:5–17

    Google Scholar 

  • Bakker RJ (2003) Package FLUIDS 1. Computer programs for analysis of fluid inclusions data and for modeling bulk fluid properties. Chem Geol 194:3–23

    Article  Google Scholar 

  • Becker SP, Fall A, Bodnar RJ (2008) Synthetic fluid inclusions. XVII. PVTX properties of high-salinity H2O-NaCl solutions (>30 wt.% NaCl): applications to fluid inclusions that homogenize by halite disappearance from porphyry copper and other hydrothermal ore deposits. Econ Geol 103:539–544

    Article  Google Scholar 

  • Bi X, Hu R, Hanley JJ, Mungall JE, Peng J, Shang L, Wu K, Suang Y, Li H, Hu X (2009) Crystallization conditions (T, P, fO2) from mineral chemistry of Cu- and Au-mineralised alkaline intrusions in the Red River-Jinshajiang alkaline igneous belt, western Yunnan Province, China. Mineral Petrol 96:43–58

    Article  Google Scholar 

  • Biske YS, Seltmann R (2010) Paleozoic Tien Shan as a transitional region between the Rheic and Urals-Turkestan oceans. Gondwana Res 17:602–613

    Article  Google Scholar 

  • Bissig T, Cooke DR (2014) Introduction to the special issue devoted to alkalic porphyry Cu-Au and epithermal Au deposits. Econ Geol 109:819–825

    Article  Google Scholar 

  • Bodnar RJ (1995) Fluid inclusion evidence for a magmatic source for metals in porphyry copper deposits. In: Thompson JFH (ed) Magmas, fluids, and ore deposits. Min. Assoc. Canada Short Course Series 23, MAC, Ottawa, pp 139–152

  • Bodnar RJ, Vityk MO (1994) Interpretation of microthermometric data for H2O-NaCl fluid inclusions. In: De Vivo B, Frezzotti ML (eds) Fluid inclusions in minerals, methods and applications. Virginia Tech, Blacksburg, pp 117–130

    Google Scholar 

  • Bottrell SH, Yardley BDW, Buckley F (1988) A modified crush-leach method for the analysis of fluid inclusion electrolytes. Bulletin de Minéralogie 111:279–290

    Google Scholar 

  • Candela PA, Boulton SL (1990) The influence of oxygen fugacity on tungsten and molybdenum partitioning between silicate melts and ilmenite. Econ Geol 85:633–640

    Article  Google Scholar 

  • Candela PA, Piccoli PM (1995) Model ore-metal partitioning from melts into vapor and vapor/brine mixtures. Mineral Assoc Canada Short Course Series 23:101–127

    Google Scholar 

  • Chernyshev IV, Kovalenker VA, Goldsman YV, Plotinskaya OY, Bairova ED, Oleynikova TI (2011) The isochrones Rb-Sr dating of the Late Paleozoic epithermal mineralization processes on the example of the Kairagach deposit (Kurama mineralized district, Middle Tien Shan). Geol Ore Deposits 2:115–128

  • Cline JS, Bodnar RJ (1994) Direct evolution of brine from a crystallizing silicic melt at the Questa, New Mexico, molybdenum deposit. Econ Geol 89:1780–1802

    Article  Google Scholar 

  • Cole A, Wilkinson JJ, Halls C, Serenko TJ (2000) Geological characteristics, tectonic setting and preliminary interpretations of the Jilau gold-quartz vein deposit, Tajikistan. Min Dep 35:600–618

    Article  Google Scholar 

  • Crawford ML (1981) Phase equilibria in aqueous fluid inclusions. In: Hollister LS, Crawford ML (eds) Fluid inclusions: application to petrology. Min Assoc Canada Short Course Handbook 6, MAC, Calgary, pp 75–100

  • Dalimov TN (2007) A model of the evolution and development of the Chatkal-Kurama plume. Geol Mineral Resources (Uzbekistan) 3:3–19 (in Russian)

    Google Scholar 

  • Darling RS (1991) An extended equation to calculate NaCl contents from final clathrate melting temperatures in H2O-CO2-NaCl fluid inclusions: implications for PT-isochors location. Geochim Cosmochim Acta 55:3869–3871

    Article  Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    Article  Google Scholar 

  • Droop GTR (1987) A general equation for estimating Fe3+ concentrations in ferromagnesian silicates and oxides from microprobe analyses, using stoichiometric criteria. Miner Mag 51:431–435

    Article  Google Scholar 

  • Einaudi MT (1982a) Description of skarns associated with porphyry copper plutons: Southwestern North America. In: Titley SR (ed) Advances in geology of the porphyry copper deposits, Southwestern North America. Univ. Arizona Press, Tucson, pp 139–183

    Google Scholar 

  • Einaudi MT (1982b) General features and origin of skarns associated with porphyry copper plutons: Southwestern North America. In: Titley SR (ed) Advances in geology of the porphyry copper deposits, Southwestern North America. Univ. Arizona Press, Tucson, pp 185–209

    Google Scholar 

  • Einaudi MT, Meinert LD, Newberry RJ (1981) Skarn deposits. Econ Geol 75th Anniv Vol 317–391

  • Fournier RO (1999) Hydrothermal process related to movement of fluid from plastic into brittle rock in the magmatic-epithermal environment. Econ Geol 94:1193–1212

    Article  Google Scholar 

  • Gammons CH, Williams-Jones AE (1997) Chemical mobility of gold in the porphyry-epithermal environment. Econ Geol 92:45–59

    Article  Google Scholar 

  • Goldfarb R, Taylor RD, Collins GS, Goryachev NA, Orlandini OF (2014) Phanerozoic continental growth and gold metallogeny of Asia. Gondwana Res 25:48–102

    Article  Google Scholar 

  • Goldstein RH, Reynolds TJ (1994) Systematics of fluid inclusions in diagenetic minerals. Soc Sediment Geol Short Course 31:199

  • Gustafson WI (1974) The stability of andradite, hedenbergite, and related minerals in the system Ca-Fe-Si-O-H. Jour Petrology 15:455–496

    Article  Google Scholar 

  • Gutierrez F, Parada MA (2010) Numerical modeling of time-dependent fluid dynamics and differentiation of a shallow basaltic magma chamber. Jour Petrol 51:73–762

    Article  Google Scholar 

  • Halter WE, Heinrich CE, Pettke T (2005) Magma evolution and the formation of porphyry Cu-Au ore fluids: evidence from silicate and sulfide melt inclusions. Min Dep 39:845–863

    Article  Google Scholar 

  • Harris AC, Golding SD (2002) New evidence of magmatic-fluid-related phyllic alteration: implications for the genesis of porphyry cu deposits. Geology 30:335–338

    Article  Google Scholar 

  • Hedenquist JW, Arribas A, Reynolds TJ (1998) Evolution of an intrusion-centered hydrothermal system: far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Econ Geol 93:373–404

    Article  Google Scholar 

  • Hollings P, Wolfe R, Cooke DR, Waters PJ (2011) Geochemistry of Tertiary igneous rocks of northern Luzon, Philippines: evidence for a back-arc setting for alkalic porphyry copper-gold deposits and a case for slab roll-back? Econ Geol 106:1257–1277

    Article  Google Scholar 

  • Ishihara S (1977) The magnetite-series and ilmenite-series granitic rocks. Mining Geol 27:293–305

    Google Scholar 

  • Islamov F, Kremenetsky A, Minzer E, Koneev R (1999) The Kochbulak-Kairagach ore field. In: Shayakubov T, Islamov F, Kremenetsky A, Seltmann R (eds) Au, Ag and Cu deposits of Uzbekistan. GFZ, Potsdam, pp 91–106

    Google Scholar 

  • Jenchuraeva RJ (1983) Skarns of the Middle Tien Shan: settings and ores. Ilim Publishing, Frunze 283 p. (in Russian)

    Google Scholar 

  • Jenchuraeva RJ (2001) Paleozoic geodynamics, magmatism and metallogeny of the Tien Shan. In: Seltmann R, Jenchuraeva RJ (eds) Paleozoic geodynamics and gold deposits in the Kyrgyz Tien Shan. CERCAMS, London, pp 29–70

  • Jenchuraeva RJ (2010) Geodynamics, metallogeny, and ore genesis of Tien Shan and adjacent territories. Ilim Publishing, Bishkek 211 p. (in Russian)

    Google Scholar 

  • Jenner FE, O’Neil HSC, Arculus RJ, Mavrogenes JA (2010) The magnetite crisis in the evolution of arc-related magmas and the initial concentration of Au, Ag and Cu. Jour Petrol 51:2245–2264

    Article  Google Scholar 

  • Johnson JW, Norton D (1985) Theoretical prediction of hydrothermal conditions and chemical equilibria during skarn formation in porphyry copper systems. Econ Geol 80:1797–1823

    Article  Google Scholar 

  • Keith JD, Whitney JA, Hattori K, Ballantyne GH, Christiansen EH, Barr DL, Cannan TM, Hook CJ (1997) The role of magmatic sulfides and mafic alkaline magmas in the Bingham and Tintic mining districts, Utah. J Petrol 38:1679–1690

    Article  Google Scholar 

  • Kröner A, Kovach V, Belousova E, Hegner E, Armstrong R, Dolgopolova A, Seltmann R, Alexeiev DV, Hoffmann JE, Wong J, Sun M, Cai K, Wang T, Tong Y, Wild SA, Degtyarev KE, Rytsk E (2014) Reassessment of continental growth during the accretionary history of the Central Asian Orogenic Belt. Gondwana Res 25:103–125

    Article  Google Scholar 

  • Kudrin VS, Soloviev SG, Stavinsky VA, Kabardin LL (1990) The gold-copper-molybdenum-tungsten ore belt of the Tien Shan. Internat Geol Rev 32:930–941

    Article  Google Scholar 

  • Le Maitre RW, Bateman P, Dudek A, Keller J, Lameyre J, Le Bas MJ, Sabine PA, Schmid R, Sorensen H, Streckeisen A, Wooley AR, Zanetti B (1989) A classification of igneous rocks and glossary of terms. Blackwell, Oxford

    Google Scholar 

  • LeFort D, Hanley J, Guillong M (2011) Subepithermal Au-Pd mineralization associated with an alkalic porphyry Cu-Au deposit, Mount Milligan, Quesnel terrane, British Columbia, Canada. Econ Geol 106:781–808

    Article  Google Scholar 

  • Lentz DR, Suzuki K (2000) A low F pegmatite-related skarn from the Southwestern Grenville Province, Ontario, Canada: phase equilibria and petrogenetic implications. Econ Geol 95:1319–1337

    Google Scholar 

  • Levitan G (2008) Gold deposits of the CIS. Xlibris, USA 352 p.

    Google Scholar 

  • Loucks RR, Mavrogenes JA (1999) Gold solubility in supercritical hydrothermal brines measured in synthetic fluid inclusions. Science 284:2159–2163

    Article  Google Scholar 

  • Lowenstern JB (2001) Carbon dioxide in magmas and implications for hydrothermal systems. Min Dep 36:490–502

    Article  Google Scholar 

  • Lu YJ, Kerrich R, Mccuaig TC, Li ZX, Hart CJR, Cawood PA, Hou ZQ, Bagas L, Cliff J, Belousova EA, Tang SH (2013) Geochemical, Sr–Nd–Pb, and zircon Hf-O isotopic compositions of Eocene-Oligocene shoshonitic and potassic adakite-like felsic intrusions in Western Yunnan, SW China: petrogenesis and tectonic implications. J Petrol 54(7):1309–1348

    Article  Google Scholar 

  • MacLean WH, Barrett TJ (1993) Lithogeochemical techniques using immobile elements. Jour Geochem Explor 48:109–133

    Article  Google Scholar 

  • Maniar PD, Piccoli PM (1989) Tectonic discrimination of granitoids. Geol Soc America Bull 101:635–643

    Article  Google Scholar 

  • Mao J, Konopelko D, Seltmann R, Lehman B, Chen W, Wan Y, Eklund O, Usubaliev T (2004) Postcollisional age of the Kumtor gold deposit and timing of Hercynian events in the Tien Shan, Kyrgyzstan. Econ Geol 99:1771–1780

    Article  Google Scholar 

  • Mao J, Goldfarb RJ, Wang Y, Hart CJ, Wang Z, Yang J (2005) Late Paleozoic base and precious metal deposits, East Tienshan, Xinjiang, China: characteristics and geodynamic setting. Episodes 28:23–36

    Google Scholar 

  • Martin H, Smithies RH, Rapp R, Moyend JF, Champion D (2005) An overview of adakite, tonalite–trondhjemite–granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79:1–24

    Article  Google Scholar 

  • Masterman GJ, Cooke DR, Berry RF, Walshe JL, Lee AW, Clark AH (2005) Fluid chemistry, structural setting, and emplacement history of the Rosario Cu-Mo porphyry and Cu-Ag-Au epithermal veins, Collahuasi District, Northern Chile. Econ Geol 100:835–862

    Article  Google Scholar 

  • Meinert LD (1995) Compositional variations of igneous rocks associated with skarn deposits – chemical evidence for a genetic connection between petrogenesis and mineralization. In Thompson JFH (ed) Magmas, fluids, and ore deposits. Min Assoc Canada Short Course Series 23:401–418

    Google Scholar 

  • Meinert LD (1998) A review of skarns that contain gold. Miner Assoc Canada, Short Course Series 26:359–414

    Google Scholar 

  • Meinert LD (2000) Gold in skarns related to epizonal intrusions. Rev Econ Geol 13:347–375

    Google Scholar 

  • Meinert LD, Hefton KK, Mayes D, Tasiran I (1997) Geology, zonation, and fluid evolution of the Big Gossan Cu–Au skarn deposit, Ertsberg District, Irian Jaya. Econ Geol 92:509–534

    Article  Google Scholar 

  • Meinert LD, Hedenquist JW, Saton H, Matsuhisa Y (2003) Formation of anhydrous and hydrous skarns in Cu-Au ore deposits by magmatic fluids. Econ Geol 98:147–156

    Article  Google Scholar 

  • Meinert LD, Dipple GM, Nicolescu S (2005) World skarn deposits. Econ Geol 100th Anniv Vol 299–336

  • Menganson MJ, Candela PA, Piccoli PM (2011) Molybdenum, tungsten and manganese partitioning in the system pyrrhotite-Fe-S-O melt-rhyolite melt: impact of sulfide segregation on arc magma evolution. Geochim Cosmochim Acta 75:7018–7030

    Article  Google Scholar 

  • Middlemost EAK (1997) Magmas, rocks and planetary development. Longman, Harlow

    Google Scholar 

  • Mueller AG (2007) Copper-gold endoskarn and high-Mg monzodiorite-tonalite intrusions at Mt. Shea, Kalgoorlie, Australia: implications for the origin of gold-pyrite-tennantite mineralization at the Golden Mile. Miner Dep 42:737–769

    Article  Google Scholar 

  • Mueller AG, Lawrance LM, Muhling J, Pooley GD (2012) Mineralogy and PTX relationships of the Archean Hannan South Au-Cu (Co-Bi) deposit, Kalgoorlie, Western Australia: thermodynamic constraints on the formation of a zoned intrusion-related skarn. Econ Geol 107:1–24

    Article  Google Scholar 

  • Muller D, Groves DI (2016) Potassic igneous rocks and associated gold-copper mineralization, 4th edn. Springer-Verlag, Berlin-Heidelberg-New York

    Book  Google Scholar 

  • Mustard R, Ulrich T, Kamenetsky VS, Mernagh T (2006) Gold and metal enrichment in natural granitic melts during fractional crystallization. Geology 34:85–88

    Article  Google Scholar 

  • Nikonorov VV, Karaev YV, Borisov FN (2004) Gold in Kyrgyzstan: description of the deposits. Nasi Publishing, Bishkek, p 342 (in Russian)

  • Novikova NY (1989) The skarn formation in the Middle Tien Shan (on the example of the Kuru-Tegerek deposit). Ph.D.Thesis, Moscow State University. 24 p. (in Russian)

  • Ohmoto H, Rye RO (1979) Isotopes of sulfur and carbon. In: Barnes HL (ed) Geochemistry of hydrothermal ore deposits, 2nd edn. Wiley, New York, p 509–567

  • Pearce J (1996) Sources and settings of granitic rocks. Episodes 19:120–125

    Google Scholar 

  • Podlessky KV, Vlasova DK, Kudrya PF (1986) Skarns and ores at the Kuru-Tegerek deposit. In: Korzhinskyi DS (ed) Metasomatism, mineralogy, and genesis of Au and Ag deposits. Nauka Publishing, Moscow, pp 167–212 (in Russian)

    Google Scholar 

  • Potter RW (1977) Pressure corrections for fluid-inclusion homogenization temperatures based on volumetric properties of the system NaCl-H2O. US Geol Surv Jour Research 5:603–607

    Google Scholar 

  • Prendergast K, Clarke GW, Pearson NJ, Harris K (2005) Genesis of pyrite-Au-As-Zn-Bi-Te zones associated with Cu-Au skarns: evidence from the Big Gossan and Wanagon gold deposits, Ertsberg District, Papua, Indonesia. Econ Geol 100:1021–1050

    Article  Google Scholar 

  • Rafailovich MS (2013) Gold-skarn deposits in Central Asia: geological settings, mineral composition, and perspectives. Trans Kazakhstan Science Acad 1(397):16–35 (in Russian)

    Google Scholar 

  • Robinson BW, Kusakabe M (1975) Quantitative preparation of sulfur dioxide, for 34S/32S analyses, from sulfides by combustion with cuprous oxide. Anal Chem 47:1179–1181

    Article  Google Scholar 

  • Roedder E (1984) Fluid inclusions in minerals. Rev Mineral 12:644

  • Rusk BG, Reed MH, Dilles JH, Klemm LM, Heinrich CA (2004) Compositions of magmatic hydrothermal fluids determined by LA-ICP-MS of fluid inclusions from the porphyry copper-molybdenum deposit at Butte, MT. Chem Geol 210:173–199

    Article  Google Scholar 

  • Schmidt C, Bodnar RJ (2000) Synthetic fluid inclusions: XVI. PVTX properties in the system H2O-NaCl-CO2 at elevated temperatures, pressures, and salinities. Geochim Cosmochim Acta 64:3853–3869

    Article  Google Scholar 

  • Selby D, Nesbitt BE, Muehlenbachs K (2000) Hydrothermal alteration and fluid chemistry of the Endako porphyry molybdenum deposit, British Columbia. Econ Geol 95:183–202

    Article  Google Scholar 

  • Seliverstov KV (1992) Late Paleozoic geodynamics and metallogeny of the Chatkal region. Ph.D. Thesis, Institute of Geology, Bishkek. 19 p. (in Russian)

  • Seliverstov KV, Ges’ MD (2001) Petrochemical features of magmatites and major kinematic parameters of middle Carboniferous–early Permian subduction of the Turkestan paleo-ocean (Tien Shan, Northern Fergana). Rus Geol Geophys 42:1393–1397

    Google Scholar 

  • Seltmann R, Porter TM (2005) The porphyry Cu-Au/Mo deposits of Central Eurasia: 1. Tectonic, geologic and metallogenic setting and significant deposits. In Porter TM (ed) Super porphyry copper and gold deposits: a global perspective, PGC Publishing, Adelaide 2:467–512

  • Seltmann R, Shatov V, Yakubchuk A (2009) Mineral deposits database and thematic maps of Central Asia. NHM-CERCAMS, London

    Google Scholar 

  • Seltmann R, Konopelko D, Biske G, Divaev F, Sergeev S (2011) Hercynian post-collisional magmatism in the context of Paleozoic magmatic evolution of the Tien Shan orogenic belt. J Asian Earth Sci 42:821–838

    Article  Google Scholar 

  • Seltmann R, Porter TM, Pirajno F (2014) Geodynamics and metallogeny of the central Eurasian porphyry and related epithermal mineral systems: a review. Jour Asian Earth Sciences 79:810–841

    Article  Google Scholar 

  • Shelton KL (1983) Composition and origin of ore-forming fluids in a carbonate-hosted porphyry copper and skarn deposit: a fluid inclusion and stable isotope study of Mines Gaspe, Quebec. Econ Geol 78:387–421

    Article  Google Scholar 

  • Shikazono N, Shimizu M (1987) The Ag/Au ratio of native gold and electrum and the geochemical environment of gold vein deposits in Japan. Miner Dep 22:309–314

    Article  Google Scholar 

  • Shmulovich KI, Tkachenko SI, Plyasunova NV (1995) Phase equilibria in fluid systems at high pressures and temperatures. In: Yardley BWD, Shmulovich KI, Gonchar GG (eds) Fluids in the crust: equilibrium and transport properties. Chapman and Hall, London, pp 193–214

    Chapter  Google Scholar 

  • Sinclair WD (2007) Porphyry deposits. In: Goodfellow WD (ed), Mineral deposits of Canada: a synthesis of major deposit types, district metallogeny, the evolution of geological provinces, and exploration methods. Geol Assoc Canada Spec Publ 5, GAC, St. John’s, pp 223–243

  • Skirrow RG, Walshe JL (2002) Reduced and oxidized Au-Cu-Bi iron oxide deposits of the Tennant Creek Inlier, Australia: an integrated geologic and chemical model. Econ Geol 97:1167–1202

    Article  Google Scholar 

  • Solomovich LI (1997) The Hercynian intrusive magmatism of Kyrgyzstan (geodynamics, petrogenesis, and mineralization). Sci.D. Thesis, Bishkek, Kyrgyzstan Institute of Geology, 42 p

  • Soloviev SG (1993) Late Paleozoic subalkaline potassic (shoshonite-latite) magmatism in Central Tien Shan. Internat Geol Rev 35:288–304

    Article  Google Scholar 

  • Soloviev SG (2011) Geology, mineralization, and fluid inclusion characteristics of the Kensu W-Mo skarn and Mo-W-Cu-Au alkalic porphyry deposit, Tien-Shan, Kyrgyzstan. Econ Geol 106:193–222

    Article  Google Scholar 

  • Soloviev SG (2014) Metallogeny of shoshonitic magmatism. Scientific World Publishing, Moscow (in Russian)

    Google Scholar 

  • Soloviev SG (2015) Geology, mineralization, and fluid inclusion characteristics of the Kumbel oxidized W-Cu-Mo skarn and Au-W stockwork deposit, Tien-Shan, Kyrgyzstan. Min Dep 50:187–220

    Article  Google Scholar 

  • Soloviev SG, Kryazhev SG (2017) Geology, mineralization, and fluid inclusion characteristics of the Chorukh-Dairon W-Mo-Cu skarn deposit in the Middle Tien Shan, Northern Tajikistan. Ore Geol Rev 80:79–102

    Article  Google Scholar 

  • Sun SS, McDonough WA (1989) Chemical and isotopic systematics of ocean basalts: implications for mantle compositions and processes. In: Saunders AD, Norry MD (eds) Magmatism in the ocean basins. Geol Soc London Spec Publ 42, pp 313–345

  • Sun WD, Huang RF, Li H, Hu YB, Zhang CC, Sun SJ, Zhang LP, Ding X, Li CY, Zartman RE, Ling MX (2015) Porphyry deposits and oxidized magmas. Ore Geol Rev 65:97–131

    Article  Google Scholar 

  • Taylor BE, Liou JG (1978) The low-temperature stability of andradite in C-O-H fluids. Amer Miner 63:378–393

    Google Scholar 

  • Timofeeva TS (1968) Minerals of Pt and Pd in ores of a Au-sulfide deposit. Trans Russian Mineral Soc 4(92):461–469 (in Russian)

    Google Scholar 

  • Ulrich T, Gunther D, Heinrich CA (1999) Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature 399:676–679

    Article  Google Scholar 

  • Volkov VN, Lebedev VA, Goltzman YV, Arakelyantz MM, Golubev VN, Bairova ED (1999) Magmatic formations and mineralization of the Aktepe ore field (Kurama Ridge, Uzbekistan): sequence of formation and isotopic age. Geol Ore Deposits 4:266–280

    Google Scholar 

  • Williams-Jones AE, Heinrich CA (2008) Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Econ Geol 100:1287–1312

    Article  Google Scholar 

  • Winkler HGF (1976) Petrogenesis of metamorphic rocks, 4th edn. Springer Verlag, New York-Heidelberg-Berlin 334 p.

    Book  Google Scholar 

  • Yakubchuk AS (2004) Architecture and mineral deposit settings of the Altaid orogenic collage: a revised mode. Jour Asian Earth Sciences 23:761–779

    Article  Google Scholar 

  • Yakubchuk AS, Shatov VV, Kirwin D, Edwards D, Tomurtogoo O, Badarch G, Buryak VA (2005) Gold and base metal metallogeny of the Central Asian orogenic supercollage. Econ Geol 100:1035–1068

    Google Scholar 

  • Zhang LC, Xiao WJ, Qin KZ, Zhang Q (2006) The adakite connection of the Tuwu-Yandong copper porphyry belt, eastern Tianshan, NW China: trace element and Sr-Nd-Pb isotope geochemistry. Miner Dep 41:188–200

    Article  Google Scholar 

  • Zharikov VA (1970) Skarns. Int Geol Rev 12(541–559):619–647 720-775

    Article  Google Scholar 

  • Zhu Y, An F, Tan Y (2011) Geochemistry of hydrothermal gold deposits: a review. Geosci Front 2(3):367–374

    Article  Google Scholar 

Download references

Acknowledgments

This paper represents part of the authors’ work on research and assessment of Au, Cu-Au, W, and other deposits in Central Asia. Editorial reviews by G. Beaudoin, R.L. Linnen, K.A. Ansdell, H.A. Glig, and A.G. Mueller significantly improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serguei G. Soloviev.

Additional information

Editorial handling: R. Linnen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soloviev, S.G., Kryazhev, S. & Dvurechenskaya, S. Geology, mineralization, and fluid inclusion study of the Kuru-Tegerek Au-Cu-Mo skarn deposit in the Middle Tien Shan, Kyrgyzstan. Miner Deposita 53, 195–223 (2018). https://doi.org/10.1007/s00126-017-0729-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-017-0729-5

Keywords

Navigation