Formation of Si-Al-Mg-Ca-rich zoned magnetite in an end-Permian phreatomagmatic pipe in the Tunguska Basin, East Siberia

Abstract

Magma-sediment interactions in the evaporite-rich Tunguska Basin resulted in the formation of numerous phreatomagmatic pipes during emplacement of the Siberian Traps. The pipes contain magnetite-apatite deposits with copper and celestine mineralization. We have performed a detailed petrographic and geochemical study of magnetite from long cores drilled through three pipe breccia structures near Bratsk, East Siberia. The magnetite samples are zoned and rich in Si (≤5.3 wt% SiO2), Ca, Al, and Mg. They exhibit four textural types: (1) massive ore in veins, (2) coating on breccia clasts, (3) replacement ore, and (4) reworked ore at the crater base. The textural types have different chemical characteristics. “Breccia coating” magnetite has relatively low Mg content relative to Si, as compared to the other groups, and appears to have formed at lower oxygen fugacity. Time series analyses of MgO variations in microprobe transects across Si-bearing magnetite in massive ore indicate that oscillatory zoning in the massive ore was controlled by an internal self-organized process. We suggest that hydrothermal Fe-rich brines were supplied from basalt-sediment interaction zones in the evaporite-rich sedimentary basin, leading to magnetite ore deposition in the pipes. Hydrothermal fluid composition appears to be controlled by proximity to dolerite fragments, temperature, and oxygen fugacity. Magnetite from the pipes has attributes of iron oxide-apatite deposits (e.g., textures, oscillatory zoning, association with apatite, and high Si content) but has higher Mg and Ca content and different mineral assemblages. These features are similar to magnetite found in skarn deposits. We conclude that the Siberian Traps-related pipe magnetite deposit gives insight into the metamorphic and hydrothermal effects following magma emplacement in a sedimentary basin.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Aarnes I, Svensen H, Connolly JAD, Podladchikov YY (2010) How contact metamorphism can trigger global climate changes; modeling gas generation around igneous sills in sedimentary basins. Geochim Cosmochim Acta 74:7179–7195

    Article  Google Scholar 

  2. Antal T, Droz M, Magnin J, Racz Z, Zrinyi M (1998) Derivation of the Matalon-Packter law for Liesegang patterns. J Chem Phys 109:9479–9486

    Article  Google Scholar 

  3. Apukhtina OB, Kamenetsky VS, Ehrig K et al (2016) Postmagmatic magnetite-apatite assemblage in mafic intrusions: a case study of dolerite at Olympic Dam, South Australia. Contrib Mineral Petrol 171:2

    Article  Google Scholar 

  4. Barton MD (2014) 13.20 Iron oxide (–Cu–Au–REE–P–Ag–U–Co) systems. Geochemistry of mineral deposits. Treatise on geochemistry, Scott SD (ed) 13:515–541

  5. Black BA, Lamarque J-F, Shields CA, Elkins-Tanton LT, Kiehl JT (2014) Acid rain and ozone depletion from pulsed Siberian Traps magmatism. Geology 42:67–70

    Article  Google Scholar 

  6. Burgess SD, Bowring SA (2015) High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Sci Advanc 1(7):e1500470

    Article  Google Scholar 

  7. Dare SA, Barnes S-J, Beaudoin G (2012) Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: implications for provenance discrimination. Geochim Cosmochim Acta 88:27–50

    Article  Google Scholar 

  8. Dare SA, Barnes S-J, Beaudoin G, Méric J, Boutroy E, Potvin-Doucet C (2014) Trace elements in magnetite as petrogenetic indicators. Mineral Deposita 49:785–796

    Article  Google Scholar 

  9. Dare SA, Barnes S-J, Beaudoin G (2015) Did the massive magnetite “lava flows” of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite compositions by LA-ICP-MS. Mineral Deposita 50:607–617

    Article  Google Scholar 

  10. Dupuis C, Beaudoin G (2011) Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types. Mineral Deposita 46:319–335

    Article  Google Scholar 

  11. Ernst RE, Bleeker W, Svensen H, Planke S, Polozov AG (2009) Vent complexes above dolerite sills in Phanerozoic LIPs: implications for Proterozoic LIPs and IOCG deposits. Am Geol Union, Geol Ass Canada, Mineral Ass Canada Ann Meet, Toronto, Canada, 24–27 May

  12. Fedorenko VA, Czamanske G (1997) Results of new field and geochemical studies of the volcanic and intrusive rocks of the Maymecha-Kotuy area, Siberian flood-basalt province, Russia. Internat Geol Rev 39:479–531

    Article  Google Scholar 

  13. Fraser DG, Feltham D, Whiteman M (1989) High-resolution scanning proton microprobe studies of micron-scale zoning in a secondary dolomite: implications for studies of redox behavior in dolomites. Sediment Geol 65:223–232

    Article  Google Scholar 

  14. Frietsch R, Perdahl JA (1995) Rare earth elements in apatite and magnetite in Kiruna-type iron ores and some other iron ore types. Ore Geol Rev 9:489–510

    Article  Google Scholar 

  15. Fristad KE, Pedentchouk N, Rosche M, Polozov A, Svensen H (2015) An integrated carbon isotope record of an end-Permian crater lake above a phreatomagmatic pipe of the Siberian Traps. Palaeogeogr Palaeoclim Palaeoecol 428:39–49

    Article  Google Scholar 

  16. Frolov SV, Akhmanov GG, Kozlova EV, Krylov OV, Sitar KA, Galushkin YI (2011) Riphean basins of the central and western Siberian Platform. Marine Petrol Geol 28:906–920

    Article  Google Scholar 

  17. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeont Electron 4:1–9 9 pp

    Google Scholar 

  18. Hu H, Lentz D, Li J-W, McCarron T, Zhao X-F, Hall D (2015) Reequilibration processes in magnetite from iron skarn deposits. Econ Geol 110:1–5

    Article  Google Scholar 

  19. Huberty JM, Konishi H, Heck PR, Fournelle JH, Valley JW, Xu H (2012) Silician magnetite from the Dales Gorge member of the Brockman iron formation, Hamersley Group, Western Australia. Am Mineral 97:26–37

    Article  Google Scholar 

  20. Hunt JA, Baker T, Thorkelson DJ (2007) A review of iron oxide copper-gold deposits, with focus on the Wernecke Breccias, Yukon, Canada, as an example of a non-magmatic end member and implications for IOCG genesis and classification. Explor Mineral Geol 16:209–232

    Article  Google Scholar 

  21. Jamtveit B, Andersen T (1993) Contact metamorphism of layered shale-carbonate sequences in the Oslo Rift; III, the nature of skarn-forming fluids. Econ Geol 88:1830–1849

    Article  Google Scholar 

  22. Jerram DA, Svensen HH, Planke S, Polozov AG, Torsvik TH (2016) The onset of flood volcanism in the north-western part of the Siberian Traps: explosive volcanism versus effusive lava flows. Palaeogeogr Palaeoclimat Palaeoecol 441:38–50

    Article  Google Scholar 

  23. Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Wӓlle M, Heinrich CA, Holtz F, Munizaga R (2015) Trace elements in magnetite from massive iron oxide-apatite deposits indicate a combined formation by igneous and magmatic-hydrothermal processes. Geochim Cosmochim Acta 171:15–38

    Article  Google Scholar 

  24. Koděra P, Rankin AH, Lexa J (1998) Evolution of fluids responsible for iron skarn mineralisation: an example from the Vyhne-Klokoč deposit, Western Carpathians, Slovakia. Mineral Petrol 64:119–147

    Article  Google Scholar 

  25. Kontorovich AE, Khomenko AV, Burshtein LM et al (1997) Intense basic magmatism in the Tunguska petroleum basin, eastern Siberia, Russia. Petrol Geosci 3:359–369

    Article  Google Scholar 

  26. Mazurov MP, Grishina SN, Istomin VE, Titov AT (2007) Metasomatism and ore formation at contacts of dolerite with saliferous rocks in the sedimentary cover of the southern Siberian platform. Geol Ore Deposits 49:271–284

    Article  Google Scholar 

  27. Nadoll P, Angerer T, Mauk JL, French D, Walshe J (2014) The chemistry of hydrothermal magnetite: a review. Ore Geol Rev 61:1–32

    Article  Google Scholar 

  28. Newberry NG, Peacore DR, Essene EJ, Geissman JW (1982) Silicon in magnetite: high resolution microanalysis of magnetite-ilmenite intergrowths. Contrib Mineral Petrol 80:223–340

    Article  Google Scholar 

  29. Nyström JO, Henrίquez F (1994) Magmatic features of iron ores of the Kiruna type in Chile and Sweden: ore textures and magnetites geochemistry. Econ Geol 89:820–839

    Article  Google Scholar 

  30. Polozov AG, Svensen HH, Planke S, Grishina SN, Fristad KE, Jerram DA (2016) The basalt pipes of the Tunguska Basin (Siberia, Russia): high temperature processes and volatile degassing to the end-Permian atmosphere. Palaeogeogr Palaeoclimatol Palaeoecol 441:51–64

    Article  Google Scholar 

  31. Reichow MK, Pringle M, Al'Mukhamedov AI et al (2009) The timing and extent of the eruption of the Siberian Traps large igneous province: implications for the end-Permian environmental crisis. Earth Planet Sci Lett 277:9–20

    Article  Google Scholar 

  32. Schulz M, Mudelsee M (2002) REDFIT: estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Comput Geosci 28:421–426

    Article  Google Scholar 

  33. Shcheka SA, Romanenko IM, Chubarov VM (1977) Silica-bearing magnetites. Contrib Mineral Petrol 63:103–111

    Article  Google Scholar 

  34. Shimazaki H (1998) On the occurrence of silician magnetites. Resource Geol 48:23–29

    Article  Google Scholar 

  35. Shore M, Fowler AD (1996) Oscillatory zoning in minerals: a common phenomenon. Canadian Mineral 34:1111–1126

    Google Scholar 

  36. Sillitoe RH (2003) Iron oxide-copper-gold deposits: an Andean view. Mineral Deposita 38:787–812

    Article  Google Scholar 

  37. Skirrow RG (2010) “Hematite-group” IOCG ± U systems: tectonic settings, hydrothermal characteristics, and Cu-Au and U mineralizing processes. In: Corriveau L, and Mumin H (eds) Exploring for iron oxide copper-gold deposits: Canada and global analogues. Geol Ass Canada pp 39–58

  38. Soloviev SG (2010) Iron oxide copper-gold and related mineralisation of the Siberian craton, Russia: 1—iron oxide deposits in the Angara and Ilim river basins, south-central Siberia. In: Porter TM (ed) Hydrothermal iron oxide copper-gold and related deposits: a global perspective, v. 4—advances in the understanding of IOCG deposits. PGC Publishing, Adelaide, pp 495–514

    Google Scholar 

  39. Svensen H et al (2009) Siberian gas venting and the end-Permian environmental crisis. Earth Planet Sci Lett 277:490–500

    Article  Google Scholar 

  40. Vasiliev YR, Zolotukhin VV, Feoktistov GD, Prusskaya SN (2000) Evaluation of the volumes and genesis of Permo-Triassic trap magmatism on the Siberian Platform. Geol Geofiz 41:1696–1705

    Google Scholar 

  41. von der Flaass GS (1992) Magmatic stage in evolution of the Angara-Ilim type ore-forming system. Russian Geol Geophys 33(2):67–72

    Google Scholar 

  42. von der Flaass GS (1995) Cup-shaped structures of iron ore deposits in the south of the Siberian Platform (Russia). Geol Ore Depos 37:340–350

    Google Scholar 

  43. von der Flaass GS (1997) Structural and genetic model of an ore field of the Angaro-Ilim type (Siberian Platform). Geol Ore Depos 39:461–473

    Google Scholar 

  44. von der Flaass GS, Nikulin VI (2000) Atlas of ore field structures of iron-ore deposits. Irkutsk State University Publish Irkutsk, Irkutsk 192 pp

    Google Scholar 

  45. Westendorp RW, Watkinson DH, Jonasson IR (1991) Silicon-bearing zoned magnetite crystals and the evolution of hydrothermal fluids at the Ansil Cu-Zn mine, Rouyn-Noranda, Quebec. Econ Geol 86:1110–1114

    Article  Google Scholar 

  46. Williams PJ, Barton MD, Johnson D, Fontboté L, De Haller AGM, Oliver NHS, Marschik R (2005) Iron oxide copper-gold deposits: geology, space-time distribution, and possible modes of origin. Econ Geol, 100th Anniversary Vol: 371–405

  47. Xu H, Shen Z, Konish H (2014) Si-magnetite nano-precipitates in silician magnetite from banded iron formation: Z-contrast imaging and ab initio study. Am Mineral 99:2196–2202

    Article  Google Scholar 

  48. Zang W, Fyfe WS (1995) Chloritization of the hydrothermally altered bedrock at the Igarape-Bahia gold deposit, Carajas, Brazil. Mineral Depos 30:30–38

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the Norwegian Research Council via SFF grants to PGP and CEED (grant number 223272) and a grant to H. Svensen (EPIC). We thank Kirsten E. Fristad and Sverre Planke for discussions and support during fieldwork in Siberia, Muriel Erambert for her assistance during EMP analyses, and Stephane Polteau and Clement Ganino for their work on-site when logging and sampling the S26 core. The manuscript has improved significantly through constructive criticism and suggestions from Charley Duran and an anonymous reviewer.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Else-Ragnhild Neumann.

Additional information

Editorial handling: F. Melcher

Electronic supplementary material

ESM 1

(XLSX 139 kb)

ESM 2

(DOCX 38 kb)

ESM 3

(DOCX 15 kb)

ESM 4

(PDF 2921 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Neumann, E., Svensen, H.H., Polozov, A.G. et al. Formation of Si-Al-Mg-Ca-rich zoned magnetite in an end-Permian phreatomagmatic pipe in the Tunguska Basin, East Siberia. Miner Deposita 52, 1205–1222 (2017). https://doi.org/10.1007/s00126-017-0717-9

Download citation

Keywords

  • Si-bearing magnetite
  • Siberian Traps
  • Phreatomagmatic pipe
  • Evaporite
  • Oscillatory zoning