Reactive transport model of the formation of oxide-type Ni-laterite profiles (Punta Gorda, Moa Bay, Cuba)

Abstract

Oxide-type Ni-laterite deposits are characterized by a dominant limonite zone with goethite as the economically most important Ni ore mineral and a thin zone of hydrous Mg silicate-rich saprolite beneath the magnesium discontinuity. Fe, less soluble, is mainly retained forming goethite, while Ni is redeposited at greater depth in a Fe(III) and Ni-rich serpentine (serpentine II) or in goethite, where it adsorbs or substitutes for Fe in the mineral structure. Here, a 1D reactive transport model, using CrunchFlow, of Punta Gorda oxide-type Ni-laterite deposit (Moa Bay, Cuba) formation is presented. The model reproduces the formation of the different laterite horizons in the profile from an initial, partially serpentinized peridotite, in 106 years, validating the conceptual model of the formation of this kind of deposits in which a narrow saprolite horizon rich in Ni-bearing serpentine is formed above peridotite parent rock and a thick limonite horizon is formed over saprolite. Results also confirm that sorption of Ni onto goethite can explain the weight percent of Ni found in the Moa goethite.

Sensitivity analyses accounting for the effect of key parameters (composition, dissolution rate, carbonate concentration, quartz precipitation) on the model results are also presented. It is found that aqueous carbonate concentration and quartz precipitation significantly affects the laterization process rate, while the effect of the composition of secondary serpentine or of mineral dissolution rates is minor. The results of this reactive transport modeling have proven useful to validate the conceptual models derived from field observations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Aiglsperger T, Proenza JA, Lewis JF, Labrador M, Svojtka M, Rojas-Purón A, Longo F, Ďurišová J (2016) Critical metals (REE, Sc, PGE) in Ni laterites from Cuba and the Dominican Republic. Ore Geol Rev 73:127–147. doi:10.1016/j.oregeorev.2015.10.010

    Article  Google Scholar 

  2. Arai Y (2008) Spectroscopic evidence for Ni(II) surface speciation at the iron oxyhydroxides-water interface. Environ Sci Technol:1151–1156

  3. Beukes JP, Giesekke EW, Elliott W (2000) Nickel retention by goethite and hematite. Miner Eng 13:1573–1579

    Article  Google Scholar 

  4. Bertolo R, Hirata R, Sracek O (2006) Geochemistry and geochemical modeling of unsaturated zone in a tropical region in Urânia, Sao Paulo state, Brazil. J Hydrol 329:49–62

    Article  Google Scholar 

  5. Brand NW, Butt CRM, Elias M (1998) Nickel laterites: classification and features. AGSO J Australian Geol Geoph 17:81–88

  6. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  Google Scholar 

  7. Bryce AL, Kornicker WA, Elrerman AW (1994) Nickel adsorption to hydrous ferric oxide in the presence of EDTA: effects of component addition sequence. Environ Sci Technol 28:2353–2359

    Article  Google Scholar 

  8. Buerge-Weirich D, Hari R, Xue H, Behra P, Sigg L (2002) Adsorption of Cu, Cd, and Ni on goethite in the presence of natural groundwater ligands. Environ Sci Technol 36:328–336

    Article  Google Scholar 

  9. Butt CRM, Cluzel D (2013) Nickel laterite ore deposits: weathered serpentinites. Elements 9:123–128. doi:10.2113/gselements.9.2.123

    Article  Google Scholar 

  10. Carvalho-e-Silva MLM, Partiti CSM, Enzweiler J, Petit S, Netto SM, De Oliveira SMB (2002) Characterization of Ni-containing goethites by Mössbauer spectroscopy and other techniques. Hyperfine Interact 142:559–576

    Article  Google Scholar 

  11. Carvalho-e-Silva MLM, Ramos AY, Nogueira Tolentino HC, Enzweiler J, Netto SM, Martins Alves MC (2003) Incorporation of Ni into natural goethite: an investigation by X-ray absorption spectroscopy. Am Mineral 88:876–882. 0003-004X/03/0506–87605.00 876

  12. Cathelineau M, Quesnel B, Gautier P, Boulvais P, Couteau C, Drouillet M (2016) Nickel dispersion and enrichment at the bottom of the regolith: formation of pimelite target-like ores in rock block joints (Koniambo Ni deposit, New Caledonia). Mineral Deposita 51:271–282. doi:10.1007/s00126-015-0607-y

    Article  Google Scholar 

  13. Corbella M, Ayora C, Cardellach E (2004) Hydrothermal mixing, carbonate dissolution and sulfide precipitation in Mississippi Valley-type deposits. Mineral Deposita 39:344–357. doi:10.1007/s00126-004-0412-5

    Article  Google Scholar 

  14. Cornell RM (1991) Simultaneous incorporation of Mn, Ni and Co in the goethite (α-FeOOH) structure. Note. Clay Miner 26: 427–430

  15. Coughlin BR, Stone AT (1995) Nonreversible adsorption of divalent metal ions (MnII, CoII, NiII, CdII and PbII) onto goethite: effects of acidification, FeII addition, and picolinic acid addition. Environ Sci Technol 29:2445–2455

    Article  Google Scholar 

  16. Davis JA, Kent DB (1990) Surface complexation modeling in aqueous geochemistry. In: Hochella MF, White AF (eds) Reviews in mineralogy, mineral-water interface geochemistry., 23. Mineralogical Society of America, Washington, DC, pp 177–260

    Google Scholar 

  17. De Keijser TH, Langford JJ, Mittemeijer EJ, Vogels ABP (1982) Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening. J Appl Crystallogr:308–314

  18. Dublet G, Juillot F, Morin G, Fritsch E, Fandeur D, Ona-Nguema G, Brown GE Jr (2012) Ni speciation in a New Caledonian lateritic regolith: A quantitative X-ray absorption spectroscopy investigation. Geochim Cosmochim Acta 95:119–133

    Article  Google Scholar 

  19. Dublet G, Juillot F, Morin G, Fritsch E, Fandeur D, Brown GE Jr (2015) Goethite aging explains Ni depletion in upper units of ultramafic lateritic ores from New Caledonia. Geochim Cosmochim Acta 160:1–15

    Article  Google Scholar 

  20. Fan R, Gerson AR (2011) Nickel geochemistry of a Philippine laterite examined by bulk and microprobe synchrotron analyses. Geochim Cosmochim Acta 75:6400–6415

    Article  Google Scholar 

  21. Fletcher RC, Brantley SL (2010) Reduction of bedrock blocks as corestones in the weathering profile: observations and model. Am J Sci 310:131–164. doi:10.2475/03.2010.01

    Article  Google Scholar 

  22. Fletcher RC, Buss HL, Brantley SL (2006) A spheroidal weathering model coupling porewater chemistry to soil thicknesses during steady-state denudation. Earth Planet Sc Lett 244:444–457

    Article  Google Scholar 

  23. Fischer L, Brümmer GW, Barrow NJ (2007) Observations and modelling of the reactions of 10 metals with goethite: adsorption and diffusion processes. Eur J Soil Sci 58:1304–1315. doi:10.1111/j.1365-2389.2007.00924.x

    Article  Google Scholar 

  24. Foster L, Eggleton RA (2002) The Marlborough nickel laterite deposits. In: Roach IC (ed) Regolith and Landscapes in Eastern Australia. CRC LEME, 33–36

  25. Freyssinet Ph, Butt CRM, Morris RC (2005) Ore-forming processes related to lateritic weathering. Econ Geol 100th Anniv Vol: 681–722

  26. Gaboriaud F, Ehrhardt JJ (2003) Effects of different crystal faces on the surface charge of colloidal goethite (α-FeOOH) particles: an experimental and modeling study. Geochim Cosmochim Acta 67(5):967–983

  27. Galí S, Proenza JA, Labrador M, Tauler E, Melgarejo JC (2007) Numerical modeling og oxide-type Ni laterite deposits: preliminary results. In: Andrew CJ et al. (eds) Digging deeper proceedings of the ninth bienal SGA meeting. Dublin (Ireland), 1385–1388

  28. Gamsjäger H, Bugajski J, Gajda T, Lemire RJ, Preis W (2005) Chemical thermodynamics of nickel, nuclear energy agency data bank, organisation for economic co-operation and development, Ed., vol. 6, Chemical Thermodynamics. North Holland Elsevier Science Publishers B. V., Amsterdam, The Netherlands

  29. Gehring AU, Fischer H, Louvel M, Kunze K, Weidler PG (2009) High temperature stability of natural maghemite: a magnetic and spectroscopic study. Geophys J Int 179:1361–1371. doi:10.1111/j.1365-246X.2009.04348.x

    Article  Google Scholar 

  30. Giffaut E, Grivé M, Blanc P, Vieillard P, Colàs E, Gailhanou H, Gaboreau S, Marty N, Madé B, Duro L (2014) Andra thermodynamic database for performance assessment: ThermoChimie. Appl Geochem 49:225–236

    Article  Google Scholar 

  31. Gleeson SA, Butt CR, Elias M (2003) Nickel laterites: a review. SEG News 54:11–18

  32. Goodfellow BW, Hilley GE, Schulz MS (2011) Vadose zone controls on weathering intensity and depth: observations from grussic saprolites. Appl Geochem 26:S36–S39. doi:10.1016/j.apgeochem.2011.03.023

    Article  Google Scholar 

  33. Golightly JP (1981) Nickeliferous laterite deposits. Econ Geol, 75th anniversary volume 710–735

  34. Golightly JP, Plamondon M, Srivastava RM (2008) 43-101F1 technical report on the Camarioca Norte and Camarioca Sur nickel laterite properties in Cuba (www.sedar.com Sherritt International filed May 9 2008)

  35. Golightly JP (2010) Progress in understading the evolution of nickel laterites. Soc Eco Geo Spe Pub 15:451–485

    Google Scholar 

  36. Golightly JP, Arancibia ON (1979) The chemical composition and infrared spectrum of nickel- and iron-substituted serpentine from a nickeliferous laterite profile, Soroako, Indonesia. Can Mineral 17:719–728

    Google Scholar 

  37. Hayes KF, Leckie JO (1987) Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces. J Colloid Interf Sci 115:564–572

    Article  Google Scholar 

  38. Hewawasam T, von Blanckenburg F, Bouchez J, Dixon JL, Schuessler JA, Maekeler R (2013) Slow advance of the weathering front during deep,supply-limited saprolite formation in the tropical Highlands of Sri Lanka. Geochim Cosmochim Acta 118:202–230

    Article  Google Scholar 

  39. Klug HP, Alexander LE (1962) X-ray diffraction procedures for polycrystalline and amorphous materials (Chapter 9). John Wiley and Sons. Inc., New York

  40. Königsberger E, Königsberger LC, Gamsjäger H (1999) Low temperature thermodynamic model for the system Na2CO3-MgCO3-CaCO3-H2O. Geochim Cosmochim Acta 63:3105–3119

    Article  Google Scholar 

  41. Lambiv Dzemua G, Gleeson SA, Schofield PF (2013) Mineralogical characterization of the Nkamouna Co–Mn laterite ore, southeast Cameroon. Mineral Deposita 48:155–171. doi:10.1007/s00126-012-0426-3

    Article  Google Scholar 

  42. Langford JL (1978) A rapid method for analyzing the breaths of diffraction and spectral lines using the Voigt function. J Appl Crystallogr 11:10–14

    Article  Google Scholar 

  43. Lasaga AC (1998) Kinetic theory in the earth sciences. Princeton University Press, Princeton

    Book  Google Scholar 

  44. Lavaut W (1998) Tendencias geológicas del intemperismo de las rocas ultramáficas en Cuba oriental. Minería y Geología 15:9–16

    Google Scholar 

  45. Lebedeva MI, Fletcher RC, Balashov VN, Brantley SL (2007) A reactive diffusion model describing transformation of bedrock to saprolite. Chem Geol 244:624–645

    Article  Google Scholar 

  46. Lewis JF, Draper G, Proenza JA, Espaillat J, Jimenez J (2006) Ophiolite-related ultramafic rocks (serpentinites) in the Caribbean region: a review of their occurrence, composition origin, emplacement and Ni-laterite soils formation. Geol Acta 4:237–263

    Google Scholar 

  47. Lilova KI, Xu F, Rosso KM, Pearce CI, Kamali S, Navrotsky A (2012) Oxide melt solution calorimetry of Fe2+-bearing oxides and application to the magnetite-maghemite (Fe3O4-Fe8/3O4) system. Am Mineral 97(1):164–175. doi:10.2138/am.2012.3883

  48. Linchenat A, Shirakova I (1964) Individual characteristics of nickeliferous iron (laterite) deposits of the northeast part of Cuba (Pinares de Mayari, Nicaro and Moa). 24th International Geological Congress, Montreal, Part 14, Section 14:172–187

  49. Louër D, Aufrédic JP, Langford JL, Ciosmak D, Niepce JC (1983) A precise determination of the shape, size and distribution of size of crystallites in zinc oxide by X-ray line-broadening analysis. J Appl Crystallogr 16:183–191

    Article  Google Scholar 

  50. Manceau A, Schlegel ML, Musso M, Sole VA, Gauthier C, Petit PE, Trolard F (2000) Crystal chemistry of trace elements in natural and synthetic goethite. Geochim Cosmochim Acta 64:3643–3661

    Article  Google Scholar 

  51. Marchesi C, Garrido CJ, Godard M, Proenza JA, Gervilla F, Blanco-Moreno J (2006) Petrogenesis of highly depleted peridotites and gabbroic rocks from the Mayarí-Baracoa Ophiolitic Belt (eastern Cuba). Contrib Mineral Petr 151:717–736

    Article  Google Scholar 

  52. Marcussen H, Holm PE, Strobel BW, Hansen HCB (2009) Nickel sorption to goethite and montmorillonite in presence of citrate. Environ Sci Technol 43:1122–1127

    Article  Google Scholar 

  53. Moore J, Lichtner PC, White AF, Brantley SL (2012) Using a reactive transport model to elucidate differences between laboratory and field dissolution rates in regolith. Geochim et Cosmochim Acta 93:235–261

    Article  Google Scholar 

  54. Morgan B, Wilson SA, Madsen IC, Gozukara YM, Habsuda J (2015) Increased thermal stability of nesquehonite (MgCO3·3H2O) in the presence of humidity and CO2: implications for low-temperature CO2 storage. Int J Greenh Gas Con 39:366–376. doi:10.1016/j.ijggc.2015.05.033

    Article  Google Scholar 

  55. Navarre-Sitchler A, Steefel CI, Sak PB, Brantley SL (2011) A reactive-transport model for weathering rind formation on basalt. Geochim Cosmochim Acta 75:7644–7667. doi:10.1016/j.gca.2011.09.033

    Article  Google Scholar 

  56. Oliveira SMB, Partiti CSM, Enzweiler J (2001) Ochreous laterite: a nickel ore from Punta Gorda, Cuba. J S Am Earth Sci 14:307–317

    Article  Google Scholar 

  57. Palandri JL, Kharaka YK (2004) A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modelling, U.S. Geological Survey, Open file report 2004–1068

  58. Pelletier B (1996) Serpentines in nickel silicate ore from New Caledonia. Australasian Institute of Mining and Metallurgy Publication Series - Nickel conference, Kalgoorlie (Western Australia) 6/96 197–205

  59. Power IM, Wilson SA, Dipple GM (2013) Serpentine carbonation for CO2 sequestration. Elements 9:115–121. doi:10.2113/gseleemnts.9.2.115

    Article  Google Scholar 

  60. Proenza JA, Gervilla F, Melgarejo JC, Bodinier JL (1999) Al- and Cr-rich chromitites from the Mayarí–Baracoa Ophiolitic Belt (eastern Cuba): consequence of interaction between volatile-rich melts and peridotite in suprasubduction mantle. Econ Geol 94:547–566

    Article  Google Scholar 

  61. Proenza JA, Tauler E, Melgarejo JC, Galí S, Labrador M, Marrero N, Pérez-Melo N, Rojas-Purón AL, Blanco-Moreno JA (2007) Mineralogy of oxide and hydrous silicate Ni-laterite profiles in Moa Bay area, northeast Cuba. In: Andrew et al. (eds) Digging deeper. Irish Association for Economic Geology, Dublin, Ireland. 2:1389–1392

  62. Quesnel B, Boulvais P, Gautier P, Cathelineau M, Cédric MJ, Dierick M, Agrinier P, Drouillet M (2016) Paired stable isotopes (O, C) and clumped isotope thermometry of magnesite and silica veins in the New Caledonia Peridotite Nappe. Geochim Cosmochim Acta 183:234–249

    Article  Google Scholar 

  63. Rajapaksha AU, Vithanage M, Weerasooriya R, Dissanayake CB (2012) Surface complexation of nickel on iron and aluminum oxides: a comparative study with single and dual site clays. Colloid Surface A 405:79–87

    Article  Google Scholar 

  64. Richter A, Brendler V, Bernhard G (2005) Blind prediction of Cu(II) sorption onto goethite: current capabilities of diffuse double layer model. Geochim et Cosmochim Acta 69:2725–2734

    Article  Google Scholar 

  65. Richter A, Brendler V (2008) Blind prediction and parameter uncertainty—a sorption test case. In: Barnett MO, Kent BD (eds) Developments in Earth and Environmental Sciences 7, Chapter 10

  66. Rojas-Purón A, Simões Angélica R, Orozco-Melgar O (2012) Identificación mineralógica de los óxidos de manganeso del yacimiento laterítico Punta Gorda, Moa, Cuba. Minería y Geología 28:1–26

    Google Scholar 

  67. Roqué-Rosell J, Mosselmans JFW, Proenza JA, Labrador M, Galí S, Atkinson KD, Quinn PD (2010) Sorption of Ni by “lithiophorite–asbolane” intermediates in Moa Bay lateritic deposits, eastern Cuba. Chem Geol 275:9–18

    Article  Google Scholar 

  68. Rose AW, Bianchi-Mosquera GC (1993) Adsorption of Cu, Pb, Zn, Co, Ni and Ag on goethite and hematite. A control on metal mobilization from red beds into stratiform copper deposits. Econ Geol 88:1226–1236

    Article  Google Scholar 

  69. Singh B, Sherman DM, Gilkes RJ, Wells MA, Mosselmans JFW (2002) Incorporation of Cr, Mn and Ni into goethite (α-FeOOH): mechanism from extended X-ray absorption fine structure spectroscopy. Clay Miner 37:639–649

    Article  Google Scholar 

  70. Soler JM (2013) Reactive transport modeling of concrete-clay interaction during 15 years at the Tournemire Underground Rock Laboratory. Eur J Mineral 25:639–654

    Article  Google Scholar 

  71. Soler JM, Cama J, Galí S, Melendez W, Ramirez A, Estanga J (2008) Composition and dissolution kinetics of garnierite from the Loma de Hierro Ni-laterite deposit, Venezuela. Chem Geol 249:191–202

    Article  Google Scholar 

  72. Soler JM, Lasaga AC (1996) A mass transfer model of bauxite formation. Geochim Cosmochimi Acta 60:4913–4931

    Article  Google Scholar 

  73. Soler JM, Lasaga AC (1998) An advection-dispersion-reaction model of bauxite formation. J Hydrol 209:311–330

    Article  Google Scholar 

  74. Steefel CI (2009) CrunchFlow. Software for modeling multicomponent reactive flow and transport. User’s manual. Lawrence Berkeley National Laboratory, Berkeley

    Google Scholar 

  75. Steefel CI, Lasaga AC (1994) A coupled model for transport of multiple chemical species and kinetic precipitation dissolution reactions with application to reactive flow in single-phase hydrothermal systems. Am J Sc 294:529–592

    Article  Google Scholar 

  76. Steefel CI, Appelo CAJ, Arora B, Jacques D, Kallbacher T, Kolditz O, Lagneau V, Lichtner C, Mayer KU, Meeussen JCL, Molins S, Moulton D, Shao H, Simunek J, Spycher N, Yabusaki SB, Yeh GT (2015) Reactive transport codes for subsurface environmental simulation. Computat Geosci 19:445–478. doi:10.1007/s10596-014-9443-x

    Article  Google Scholar 

  77. Strauss R, Brümmer GW, Barrow NJ (1997) Effects of crystallinity of goethite: I. Preparation and properties of goethites of differing crystallinity. Eur J Soil Sci 48:87–99

    Article  Google Scholar 

  78. Tauler E, Proenza JA, Galí S, Lewis JF, Labrador M, García-Romero E, Suárez M, Longo F, Bloise G (2009) Ni-sepiolite-falcondote in garnierite mineralization from the Falcondo Ni-laterite deposit, Dominican Republic. Clay Miner 44:435–454. doi:10.1180/claymin.2009.044.4.435

    Article  Google Scholar 

  79. Thorne RL, Roberts S, Herrington R (2012) Climate change and the formation of nickel laterite deposits. Geology 40:331–334

    Article  Google Scholar 

  80. Trivedi P, Axe L (2001) Ni and Zn sorption to amorphous versus crystalline iron oxides: macroscopic studies. J Colloid Interf Sci 244:221–229. doi:10.1006/jcis.2001.7970

    Article  Google Scholar 

  81. Trivedi P, Axe L, Dyer J (2001) Adsorption of metal ions onto goethite: single-adsorbate and competitive systems. Colloid Surface A 191:107–121

    Article  Google Scholar 

  82. Ulrich M, Muñoz M, Guillot S, Cathelineau M, Picard C, Quesnel B, Boulvais P, Couteau C (2014) Dissolution–precipitation processes governing the carbonation and silicification of the serpentinite sole of the New Caledonia ophiolite. Contrib Mineral Petr 167:952. doi:10.1007/s00410-013-0952-8

    Article  Google Scholar 

  83. Veneklaas EJ (1990) Nutrient fluxes in bulk precipitation and throughfall in two montane tropical rain forests, Colombia. J Ecol 78:974–992

    Article  Google Scholar 

  84. Villanova-de-Benavent C, Proenza JA, Galí S, García-Casco A, Tauler E, Lewis JF, Longo F (2014) Garnierites and garnierites: textures, mineralogy and geochemistry of garnierites in the Falcondo Ni-laterite deposit, Dominican Republic. Ore Geol Rev 58:91–109

    Article  Google Scholar 

  85. Villanova-de-Benavent C, Domènech C, Tauler C, Galí S, Tassara S, Proenza JA (2016a) Fe-Ni-rich serpentines from the saprolite horizon of Caribbean Ni-laterite deposits: a new insights from thermodynamic calculations. Mineral Deposita. doi:10.1007/s00126-016-0683-7

    Google Scholar 

  86. Villanova-de-Benavent C, Nieto F, Viti C, Proenza JA, Galí S, Roqué-Rosell J (2016b) Ni-phyllosilicates (garnierites) from the Falcondo Ni-laterite deposit (Dominican Republic): mineralogy, nanotextures, and formation mechanisms by HRTEM and AEM. Am Mineral 101:1460–1473

    Article  Google Scholar 

  87. Wells MA, Ramanaidou ER, Verrall M, Tessarolo C (2009) Mineralogy and chemical chemistry of garnierites in the Goro lateritic nickel deposit, New Caledonia. Eur J Mineral 21:467–483

    Article  Google Scholar 

  88. Whitney DL, Evans BW (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  Google Scholar 

  89. Williams MR, Fisher TR, Melack JM (1997) Chemical composition and deposition of rain in the central amazon, Brazil. Atmos Environ 31:207–217

    Article  Google Scholar 

  90. Wolery TJ (1992) EQ3NR: a computer program for geochemical aqueous speciation-solubility calculations: theoretical manual, user’s guide and related documentation (version 7.0). Publ UCRL-MA-110662 Pt III, Lawrence Livermore Lab, Livermore Calif

  91. Xu Y, Axe L, Boonfueng T, Tyson TA, Trivedi P, Pandya K (2007) Ni(II) complexation to amorphous hydrous ferric oxide: an X-ray absorption spectroscopy study. J Colloid Interf Sci 314:10–17

    Article  Google Scholar 

Download references

Acknowledgements

This research has been financially supported by FEDER Funds, the Spanish projects CGL2009-10924 and CGL2012-36263, and Catalan project 2014-SGR-1661. We are grateful to Prof. J.P. Golightly, Prof. G.Beaudoin, M.Cathelineau, and an anonymous reviewer for their careful reviews and constructive criticism of the original manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cristina Domènech.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Editorial handling: M. Cathelineau

Electronic supplementary material

ESM 1

(PDF 256 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Domènech, C., Galí, S., Villanova-de-Benavent, C. et al. Reactive transport model of the formation of oxide-type Ni-laterite profiles (Punta Gorda, Moa Bay, Cuba). Miner Deposita 52, 993–1010 (2017). https://doi.org/10.1007/s00126-017-0713-0

Download citation

Keywords

  • Oxide-type Ni-laterites
  • Reactive transport modeling
  • Sorption
  • Goethite
  • Cuba